Soil Liquefaction

Soil Liquefaction

Author: Mike Jefferies

Publisher: CRC Press

Published: 2015-09-18

Total Pages: 700

ISBN-13: 1482213672

DOWNLOAD EBOOK

A Rigorous and Definitive Guide to Soil LiquefactionSoil liquefaction occurs when soil loses much of its strength or stiffness for a time-usually a few minutes or less-and which may then cause structural failure, financial loss, and even death. It can occur during earthquakes, from static loading, or even from traffic-induced vibration. It occurs w


Physics and Mechanics of Soil Liquefaction

Physics and Mechanics of Soil Liquefaction

Author: PoulV. Lade

Publisher: Routledge

Published: 2018-04-27

Total Pages: 484

ISBN-13: 1351424459

DOWNLOAD EBOOK

The workshop aims to provide a fundamental understanding of the liquefaction process, necessary to the enhancement of liquefaction prediction. The contributions are divided into eight sections, which include: factors affecting liquefaction susceptibility and field studies of liquefaction.


Soil Liquefaction

Soil Liquefaction

Author: Michael Jefferies

Publisher: CRC Press

Published: 2006-09-04

Total Pages: 625

ISBN-13: 020330196X

DOWNLOAD EBOOK

Soil liquefaction is a major concern in areas of the world subject to seismic activity or other repeated vibration loads. This book brings together a large body of information on the topic, and presents it within a unified and simple framework. The result is a book which will provide the practising civil engineer with a very sound understanding of


Regulatory Guide

Regulatory Guide

Author: U.S. Nuclear Regulatory Commission. Office of Standards Development

Publisher:

Published:

Total Pages: 1100

ISBN-13:

DOWNLOAD EBOOK

Contents: 1. Power reactors.--2. Research and test reactors.--3. Fuels and materials facilities.--4. Environmental and siting.--5. Materials and plant protection.--6. Products.--7. Transportation.--8. Occupational health.--9. Antitrust reviews.--10. General.


NRC Regulatory Guides

NRC Regulatory Guides

Author: U.S. Nuclear Regulatory Commission

Publisher:

Published: 1973

Total Pages: 32

ISBN-13:

DOWNLOAD EBOOK

A compilation of currently available electronic versions of NRC regulatory guides.


State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences

State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences

Author: National Academies of Sciences, Engineering, and Medicine

Publisher:

Published: 2019-01-30

Total Pages: 350

ISBN-13: 9780309440271

DOWNLOAD EBOOK

Earthquake-induced soil liquefaction (liquefaction) is a leading cause of earthquake damage worldwide. Liquefaction is often described in the literature as the phenomena of seismic generation of excess porewater pressures and consequent softening of granular soils. Many regions in the United States have been witness to liquefaction and its consequences, not just those in the west that people associate with earthquake hazards. Past damage and destruction caused by liquefaction underline the importance of accurate assessments of where liquefaction is likely and of what the consequences of liquefaction may be. Such assessments are needed to protect life and safety and to mitigate economic, environmental, and societal impacts of liquefaction in a cost-effective manner. Assessment methods exist, but methods to assess the potential for liquefaction triggering are more mature than are those to predict liquefaction consequences, and the earthquake engineering community wrestles with the differences among the various assessment methods for both liquefaction triggering and consequences. State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences evaluates these various methods, focusing on those developed within the past 20 years, and recommends strategies to minimize uncertainties in the short term and to develop improved methods to assess liquefaction and its consequences in the long term. This report represents a first attempt within the geotechnical earthquake engineering community to consider, in such a manner, the various methods to assess liquefaction consequences.