Teaching Learning Based Optimization Algorithm

Teaching Learning Based Optimization Algorithm

Author: R. Venkata Rao

Publisher: Springer

Published: 2015-11-14

Total Pages: 291

ISBN-13: 3319227327

DOWNLOAD EBOOK

Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.


Metaheuristics: Outlines, MATLAB Codes and Examples

Metaheuristics: Outlines, MATLAB Codes and Examples

Author: Ali Kaveh

Publisher: Springer

Published: 2019-03-29

Total Pages: 192

ISBN-13: 3030040674

DOWNLOAD EBOOK

The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.


Advanced Optimization by Nature-Inspired Algorithms

Advanced Optimization by Nature-Inspired Algorithms

Author: Omid Bozorg-Haddad

Publisher: Springer

Published: 2017-06-30

Total Pages: 166

ISBN-13: 9811052212

DOWNLOAD EBOOK

This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.


Intelligent Computing Theories and Application

Intelligent Computing Theories and Application

Author: De-Shuang Huang

Publisher: Springer Nature

Published: 2021-08-09

Total Pages: 913

ISBN-13: 3030845222

DOWNLOAD EBOOK

This two-volume set of LNCS 12836 and LNCS 12837 constitutes - in conjunction with the volume LNAI 12838 - the refereed proceedings of the 17th International Conference on Intelligent Computing, ICIC 2021, held in Shenzhen, China in August 2021. The 192 full papers of the three proceedings volumes were carefully reviewed and selected from 458 submissions. The ICIC theme unifies the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. The theme for this conference is “Advanced Intelligent Computing Methodologies and Applications.” The papers are organized in the following subsections: Evolutionary Computation and Learning, Image and signal Processing, Information Security, Neural Networks, Pattern Recognition Swarm Intelligence and Optimization, and Virtual Reality and Human-Computer Interaction.


Applied Intelligent Decision Making in Machine Learning

Applied Intelligent Decision Making in Machine Learning

Author: Himansu Das

Publisher: CRC Press

Published: 2020-11-18

Total Pages: 263

ISBN-13: 1000208540

DOWNLOAD EBOOK

The objective of this edited book is to share the outcomes from various research domains to develop efficient, adaptive, and intelligent models to handle the challenges related to decision making. It incorporates the advances in machine intelligent techniques such as data streaming, classification, clustering, pattern matching, feature selection, and deep learning in the decision-making process for several diversified applications such as agriculture, character recognition, landslide susceptibility, recommendation systems, forecasting air quality, healthcare, exchange rate prediction, and image dehazing. It also provides a premier interdisciplinary platform for scientists, researchers, practitioners, and educators to share their thoughts in the context of recent innovations, trends, developments, practical challenges, and advancements in the field of data mining, machine learning, soft computing, and decision science. It also focuses on the usefulness of applied intelligent techniques in the decision-making process in several aspects. To address these objectives, this edited book includes a dozen chapters contributed by authors from around the globe. The authors attempt to solve these complex problems using several intelligent machine-learning techniques. This allows researchers to understand the mechanism needed to harness the decision-making process using machine-learning techniques for their own respective endeavors.


Evolutionary Optimization Algorithms

Evolutionary Optimization Algorithms

Author: Dan Simon

Publisher: John Wiley & Sons

Published: 2013-06-13

Total Pages: 776

ISBN-13: 1118659503

DOWNLOAD EBOOK

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.


Intelligent Computing Theories and Application

Intelligent Computing Theories and Application

Author: De-Shuang Huang

Publisher: Springer

Published: 2018-08-08

Total Pages: 932

ISBN-13: 3319959301

DOWNLOAD EBOOK

This two-volume set LNCS 10954 and LNCS 10955 constitutes - in conjunction with the volume LNAI 10956 - the refereed proceedings of the 14th International Conference on Intelligent Computing, ICIC 2018, held in Wuhan, China, in August 2018. The 275 full papers and 72 short papers of the three proceedings volumes were carefully reviewed and selected from 632 submissions. The papers are organized in topical sections such as Neural Networks.- Pattern Recognition.- Image Processing.- Intelligent Computing in Robotics.- Intelligent Control and Automation.- Intelligent Data Analysis and Prediction.- Fuzzy Theory and Algorithms.- Supervised Learning.- Unsupervised Learning.- Kernel Methods and Supporting Vector Machines.- Knowledge Discovery and Data Mining.- Natural Language Processing and Computational Linguistics.- Gene Expression Array Analysis.- Systems Biology.- Computational Genomics.- Computational Proteomics.- Gene Regulation Modeling and Analysis.- Protein-Protein Interaction Prediction.- Next-Gen Sequencing and Metagenomics.- Structure Prediction and Folding.- Evolutionary Optimization for Scheduling.- High-Throughput Biomedical Data Integration and Mining.- Machine Learning Algorithms and Applications.- Heuristic Optimization Algorithms for Real-World Applications.- Evolutionary Multi-Objective Optimization and Its Applications.- Swarm Evolutionary Algorithms for Scheduling and Combinatorial.- Optimization.- Swarm Intelligence and Applications in Combinatorial Optimization.- Advances in Metaheuristic Optimization Algorithm.- Advances in Image Processing and Pattern Recognition Techniques.- AI in Biomedicine.- Bioinformatics.- Biometrics Recognition.- Information Security.- Virtual Reality and Human-Computer Interaction.- Healthcare Informatics Theory and Methods.- Intelligent Computing in Computer Vision.- Intelligent Agent and Web Applications.- Reinforcement Learning.- Machine Learning.- Modeling, Simulation, and Optimization of Biological Systems.- Biomedical Data Modeling and Mining.- Cheminformatics.- Intelligent Computing in Computational Biology.- Protein Structure and Function Prediction.- Biomarker Discovery.- Hybrid Computational Intelligence: Theory and Application in Bioinformatics, Computational Biology and Systems Biology.- IoT and Smart Data.- Intelligent Systems and Applications for Bioengineering.- Evolutionary Optimization: Foundations and Its Applications to Intelligent Data Analytics.- Protein and Gene Bioinformatics: Analysis, Algorithms and Applications.


Evolutionary Optimization Algorithms

Evolutionary Optimization Algorithms

Author: Altaf Q. H. Badar

Publisher: CRC Press

Published: 2021-10-29

Total Pages: 274

ISBN-13: 1000462145

DOWNLOAD EBOOK

This comprehensive reference text discusses evolutionary optimization techniques, to find optimal solutions for single and multi-objective problems. The text presents each evolutionary optimization algorithm along with its history and other working equations. It also discusses variants and hybrids of optimization techniques. The text presents step-by-step solution to a problem and includes software’s like MATLAB and Python for solving optimization problems. It covers important optimization algorithms including single objective optimization, multi objective optimization, Heuristic optimization techniques, shuffled frog leaping algorithm, bacteria foraging algorithm and firefly algorithm. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, mechanical engineering, and computer science and engineering, this text: Provides step-by-step solution for each evolutionary optimization algorithm. Provides flowcharts and graphics for better understanding of optimization techniques. Discusses popular optimization techniques include particle swarm optimization and genetic algorithm. Presents every optimization technique along with the history and working equations. Includes latest software like Python and MATLAB.


Mechanical Design Optimization Using Advanced Optimization Techniques

Mechanical Design Optimization Using Advanced Optimization Techniques

Author: R. Venkata Rao

Publisher: Springer Science & Business Media

Published: 2012-01-14

Total Pages: 323

ISBN-13: 144712748X

DOWNLOAD EBOOK

Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .


Nature Inspired Optimization for Electrical Power System

Nature Inspired Optimization for Electrical Power System

Author: Manjaree Pandit

Publisher: Springer Nature

Published: 2020-04-07

Total Pages: 138

ISBN-13: 9811540047

DOWNLOAD EBOOK

This book presents a wide range of optimization methods and their applications to various electrical power system problems such as economical load dispatch, demand supply management in microgrids, levelized energy pricing, load frequency control and congestion management, and reactive power management in radial distribution systems. Problems related to electrical power systems are often highly complex due to the massive dimensions, nonlinearity, non-convexity and discontinuity associated with objective functions. These systems also have a large number of equality and inequality constraints, which give rise to optimization problems that are difficult to solve using classical numerical methods. In this regard, nature inspired optimization algorithms offer an effective alternative, due to their ease of use, population-based parallel search mechanism, non-dependence on the nature of the problem, and ability to accommodate non-differentiable, non-convex problems. The analytical model of nature inspired techniques mimics the natural behaviors and intelligence of life forms. These techniques are mainly based on evolution, swarm intelligence, ecology, human intelligence and physical science.