This is a great book for Python Beginner and Advanced Learner which covers Basics to Advanced Python Programming where each topic is explained with the help of Illustrations and Examples. More than 450 solved programs of this book are tested in Python 3.4.3 for windows. The range of Python Topics covered makes this book unique which can be used as a self study material or for instructor assisted teaching. This books covers Python Syllabus of all major national and international universities. Also it includes frequently asked questions for interviews and examination which are provided at the end of each chapter.
Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.
This book 'Introduction to Computing and Problem Solving with Python' will help every student,teacher and researcher to understand the computing basics and advanced PythonProgramming language. The Python programming topics include the reserved keywords,identifiers, variables, operators, data types and their operations, flowcontrol techniques which include decision making and looping, modules, filesand exception handling techniques. Advanced topics like Python regularexpressions, Database Programming and Object Oriented Programming concepts arealso covered in detail. All chapters have worked out programs, illustrations,review and frequently asked interview questions. The simple style of presentationmakes this a friend for self-learners. More than 300 solved lab exercisesavailable in this book is tested in Python 3.4.3 version for Windows. The book covers syllabus for more than 35 International Universities and45 Indian universities like Dr. APJ Abdul Kalam Technological University,Christ University, Savitribai Phule Pune University, University of Delhi, University of Calicut, Mahatma Gandhi University, University of Mumbai, AICTE, CBSE, MIT, University of Virginia, University of Chicago, University of Toronto, Technical University of Denmark etc.
Distributed across servers, difficult to test, and resistant to modification--modern software is complex. Grokking Simplicity is a friendly, practical guide that will change the way you approach software design and development. It introduces a unique approach to functional programming that explains why certain features of software are prone to complexity, and teaches you the functional techniques you can use to simplify these systems so that they''re easier to test and debug. Available in PDF (ePub, kindle, and liveBook formats coming soon). about the technology Even experienced developers struggle with software systems that sprawl across distributed servers and APIs, are filled with redundant code, and are difficult to reliably test and modify. Adopting ways of thinking derived from functional programming can help you design and refactor your codebase in ways that reduce complexity, rather than encouraging it. Grokking Simplicity lays out how to use functional programming in a professional environment to write a codebase that''s easier to test and reuse, has fewer bugs, and is better at handling the asynchronous nature of distributed systems. about the book In Grokking Simplicity, you''ll learn techniques and, more importantly, a mindset that will help you tackle common problems that arise when software gets complex. Veteran functional programmer Eric Normand guides you to a crystal-clear understanding of why certain features of modern software are so prone to complexity and introduces you to the functional techniques you can use to simplify these systems so that they''re easier to read, test, and debug. Through hands-on examples, exercises, and numerous self-assessments, you''ll learn to organize your code for maximum reusability and internalize methods to keep unwanted complexity out of your codebase. Regardless of the language you''re using, the ways of thinking in this book will help recognize problematic code and tame even the most complex software. what''s inside Apply functional programming principles to reduce codebase complexity Work with data transformation pipelines for code that''s easier to test and reuse Tools for modeling time to simplify asynchrony 60 exercises and 100 questions to test your knowledge about the reader For experienced programmers. Examples are in JavaScript. about the author Eric Normand has been a functional programmer since 2001 and has been teaching functional programming online and in person since 2007. Visit LispCast.com to see more of his credentials.
You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain.
Treat yourself to a lively, intuitive, and easy-to-follow introduction to computer programming in Python. The book was written specifically for biologists with little or no prior experience of writing code - with the goal of giving them not only a foundation in Python programming, but also the confidence and inspiration to start using Python in their own research. Virtually all of the examples in the book are drawn from across a wide spectrum of life science research, from simple biochemical calculations and sequence analysis, to modeling the dynamic interactions of genes and proteins in cells, or the drift of genes in an evolving population. Best of all, Python for the Life Sciences shows you how to implement all of these projects in Python, one of the most popular programming languages for scientific computing. If you are a life scientist interested in learning Python to jump-start your research, this is the book for you. What You'll Learn Write Python scripts to automate your lab calculations Search for important motifs in genome sequences Use object-oriented programming with Python Study mining interaction network data for patterns Review dynamic modeling of biochemical switches Who This Book Is For Life scientists with little or no programming experience, including undergraduate and graduate students, postdoctoral researchers in academia and industry, medical professionals, and teachers/lecturers. “A comprehensive introduction to using Python for computational biology... A lovely book with humor and perspective” -- John Novembre, Associate Professor of Human Genetics, University of Chicago and MacArthur Fellow “Fun, entertaining, witty and darn useful. A magical portal to the big data revolution” -- Sandro Santagata, Assistant Professor in Pathology, Harvard Medical School “Alex and Gordon’s enthusiasm for Python is contagious” -- Glenys Thomson Professor of Integrative Biology, University of California, Berkeley
Summary Taming Text, winner of the 2013 Jolt Awards for Productivity, is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. This book explores how to automatically organize text using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. The book guides you through examples illustrating each of these topics, as well as the foundations upon which they are built. About this Book There is so much text in our lives, we are practically drowningin it. Fortunately, there are innovative tools and techniquesfor managing unstructured information that can throw thesmart developer a much-needed lifeline. You'll find them in thisbook. Taming Text is a practical, example-driven guide to working withtext in real applications. This book introduces you to useful techniques like full-text search, proper name recognition,clustering, tagging, information extraction, and summarization.You'll explore real use cases as you systematically absorb thefoundations upon which they are built.Written in a clear and concise style, this book avoids jargon, explainingthe subject in terms you can understand without a backgroundin statistics or natural language processing. Examples arein Java, but the concepts can be applied in any language. Written for Java developers, the book requires no prior knowledge of GWT. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. Winner of 2013 Jolt Awards: The Best Books—one of five notable books every serious programmer should read. What's Inside When to use text-taming techniques Important open-source libraries like Solr and Mahout How to build text-processing applications About the Authors Grant Ingersoll is an engineer, speaker, and trainer, a Lucenecommitter, and a cofounder of the Mahout machine-learning project. Thomas Morton is the primary developer of OpenNLP and Maximum Entropy. Drew Farris is a technology consultant, software developer, and contributor to Mahout,Lucene, and Solr. "Takes the mystery out of verycomplex processes."—From the Foreword by Liz Liddy, Dean, iSchool, Syracuse University Table of Contents Getting started taming text Foundations of taming text Searching Fuzzy string matching Identifying people, places, and things Clustering text Classification, categorization, and tagging Building an example question answering system Untamed text: exploring the next frontier
There’s no need to fear going functional! This friendly, lively, and engaging guide is perfect for any perplexed programmer. It lays out the principles of functional programming in a simple and concise way that will help you grok what FP is really all about. In Grokking Functional Programming you will learn: Designing with functions and types instead of objects Programming with pure functions and immutable values Writing concurrent programs using the functional style Testing functional programs Multiple learning approaches to help you grok each new concept If you’ve ever found yourself rolling your eyes at functional programming, this is the book for you. Open up Grokking Functional Programming and you’ll find functional ideas mapped onto what you already know as an object-oriented programmer. The book focuses on practical aspects from page one. Hands-on examples apply functional principles to everyday programming tasks like concurrency, error handling, and improving readability. Plus, puzzles and exercises let you think and practice what you're learning. You’ll soon reach an amazing “aha” moment and start seeing code in a completely new way. About the technology Finally, there’s an easy way to learn functional programming! This unique book starts with the familiar ideas of OOP and introduces FP step-by-step using relevant examples, engaging exercises, and lots of illustrations. You’ll be amazed at how quickly you’ll start seeing software tasks from this valuable new perspective. About the book Grokking Functional Programming introduces functional programming to imperative developers. You’ll start with small, comfortable coding tasks that expose basic concepts like writing pure functions and working with immutable data. Along the way, you’ll learn how to write code that eliminates common bugs caused by complex distributed state. You’ll also explore the FP approach to IO, concurrency, and data streaming. By the time you finish, you’ll be writing clean functional code that’s easy to understand, test, and maintain. What's inside Designing with functions and types instead of objects Programming with pure functions and immutable values Writing concurrent programs using the functional style Testing functional programs About the reader For developers who know an object-oriented language. Examples in Java and Scala. About the author Michal Plachta is an experienced software developer who regularly speaks and writes about creating maintainable applications. Table of Contents Part 1 The functional toolkit 1 Learning functional programming 2 Pure functions 3 Immutable values 4 Functions as values Part 2 Functional programs 5 Sequential programs 6 Error handling 7 Requirements as types 8 IO as values 9 Streams as values 10 Concurrent programs Part 3 Applied functional programming 11 Designing functional programs 12 Testing functional programs
The book is written assuming that the reader has basic knowledge of Python programming. A brief introduction is provided for all relevant topics. Every topic is followed by all types of possible questions that an examiner or interviewer can ask the reader. The questions are arranged chapter wise so that it is easy for the reader to move from easy to complex questions. Key features:Strengthens the foundations. Lists down all important points that you need to know related to various topics in an organized manner. Prepares you for coding related interview questions. Prepares you with questions related to Algorithms and Data structures. Prepares you for theoretical questions. Provides In depth explanation of complex topics and Questions. Focuses on how to think logically to solve a problem. Follows systematic approach that will help you to prepare for an interview in short duration of time. Prepares you to think logically and answer interview questions. Table of ContentsSECTION I : PYTHON BASICSIntroduction to Python Data Types and Their in-built Functions Operators in PythonDecision Making and Loops User Defined Functions Classes and Inheritance FilesSECTION II: PYTHON DATA STRUCTURE AND ALGORITHMAlgorithm Analysis and Big-O Array Sequence Stacks, Queues, and Deque Linked List Recursion TreesSearching and Sorting
Practical Maya Programming with Python is a practical tutorial packed with plenty of examples and sample projects which guides you through building reusable, independent modules and handling unexpected errors. If you are a developer looking to build a powerful system using Python and Maya's capabilities, then this book is for you. Practical Maya Programming with Python is perfect for intermediate users with basic experience in Python and Maya who want to better their knowledge and skills.