Advances in Organometallic Chemistry

Advances in Organometallic Chemistry

Author: Anthony F. Hill

Publisher: Academic Press

Published: 2013-09-11

Total Pages: 484

ISBN-13: 0124078419

DOWNLOAD EBOOK

Almost all branches of chemistry and material science now interface with organometallic chemistry--the study of compounds containing carbon-metal bonds. This widely acclaimed serial contains authoritative reviews that address all aspects of organometallic chemistry, a field that has expanded enormously since the publication of Volume 1 in 1964. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts


Organosilicon Compounds

Organosilicon Compounds

Author: Vladimir Ya Lee

Publisher: Academic Press

Published: 2017-08-22

Total Pages: 758

ISBN-13: 0128019913

DOWNLOAD EBOOK

Organosilicon Compounds: Theory and Experiment (Synthesis), volume 1, comprises two parts. The first part, Theory, covers state-of-the-art computational treatments of unusual nonstandard organosilicon compounds that classical bonding theory fails to describe adequately. The second part, Experiment (Synthesis), describes recent synthetic advances in the preparation of a variety of organosilicon compounds with different coordination numbers of the central silicon: from tetracoordinate to low-coordinate to hypercoordinate derivatives. Organosilicon Compounds: From Theory to Synthesis to Applications provides a comprehensive overview of this important area of organic and organometallic chemistry, dealing with compounds containing carbon–silicon bonds. This field, which includes compounds that are widely encountered in commercial products such as in the fabrication of sealants, adhesives, and coatings, has seen many milestone discoveries reported during the last two decades. Beginning with the theoretical aspects of organosilicon compounds' structure and bonding, the book then explores their synthetic aspects, including main group element organosilicon compounds, transition metal complexes, silicon cages and clusters, low-coordinate organosilicon derivatives (cations, radicals, anions, multiple bonds to silicon, silaaromatics), and more. Next, readers will find valuable sections that explore physical and chemical properties of organosilicon compounds by means of X-ray crystallography, 29Si NMR spectroscopy, photoelectron spectroscopy, and other methods. Finally, the work delves into applications for industrial uses and in many related fields, such as polymers, material science, nanotechnology, bioorganics, and medicinal silicon chemistry. - Features valuable contributions from prominent experts that cover both fundamental (theoretical, synthetic, physico-chemical) and applied (material science, applications) aspects of modern organosilicon chemistry - Covers important breakthroughs in the field, along with the historically significant achievements of the past - Includes applied information for a wide range of specialists, from junior and senior researchers (from both academia and industry) - Ideal reference for those working in organometallic, organosilicon, main group element, transition metal, and industrial silicon chemistry, as well as those from interdisciplinary fields, such as polymer, material science, and nanotechnology


On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes

On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes

Author: Terrance John Hadlington

Publisher: Springer

Published: 2017-02-14

Total Pages: 256

ISBN-13: 3319518070

DOWNLOAD EBOOK

This outstanding thesis describes a detailed investigation into the use of low-oxidation-state group 14 complexes in catalysis, developed at the cutting edge of inorganic and organometallic chemistry. It includes the preparation of a number of landmark compounds, some of which challenge our current understanding of metal–metal bonding and low-oxidation-state main group chemistry. Among the many highlights of this thesis, the standout result is the development of the first well-defined, low- oxidation-state main group hydride systems as highly efficient catalysts in the hydroboration of carbonyl substrates, including carbon dioxide, which are as efficient as those observed in more traditional, transition-metal catalyses. These results essentially define a new subdiscipline of chemistry.


Materials Chemistry

Materials Chemistry

Author: Bradley D. Fahlman

Publisher: Springer

Published: 2018-08-28

Total Pages: 817

ISBN-13: 9402412557

DOWNLOAD EBOOK

The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.


Science of Synthesis: Dual Catalysis in Organic Synthesis 1

Science of Synthesis: Dual Catalysis in Organic Synthesis 1

Author: G. A. Molander

Publisher: Thieme

Published: 2020-05-22

Total Pages: 490

ISBN-13: 3132429783

DOWNLOAD EBOOK

The field of dual catalysis has developed rapidly over the last decade, and these volumes define its impact on organic synthesis. The most important, basic concepts of synergistic, dual catalytic cycles are introduced, providing newcomers to the field with reliable information on this new approach to facilitating the synthesis of organic molecules. Background information and reliable procedures for challenging transformations in synthesis are presented, applying the concept of cooperative dual catalysis as a means of increasing molecular complexity in the most efficient manner. The most useful, practical, and reliable methods for dual catalysis combining metal catalysts, organocatalysts, photocatalysts, and biocatalysts are presented.


Modern Organonickel Chemistry

Modern Organonickel Chemistry

Author: Yoshinao Tamaru

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 346

ISBN-13: 3527604235

DOWNLOAD EBOOK

Organonickel chemistry plays an increasingly important role in organic chemistry, and interest in this topic is now just as keen as in organopalladium chemistry. While there are numerous, very successful books on the latter, a book specializing in organonickel chemistry is long overdue. Edited by one of the leading experts in the field, this volume covers the many discoveries made over the past 30 years, and previously scattered throughout the literature. Active researchers working at the forefront of organonickel chemistry provide a comprehensive review of the topic, including cross-coupling reactions, asymmetric synthesis and heterogeneous catalysis reaction types. A must-have for both organometallic chemists and synthetic organic chemists.


Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies

Author: Markku Tilli

Publisher: Elsevier

Published: 2009-12-08

Total Pages: 670

ISBN-13: 0815519885

DOWNLOAD EBOOK

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: - Silicon as MEMS material - Material properties and measurement techniques - Analytical methods used in materials characterization - Modeling in MEMS - Measuring MEMS - Micromachining technologies in MEMS - Encapsulation of MEMS components - Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. - Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. - Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. - Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. - Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures


Cyclometalation Reactions

Cyclometalation Reactions

Author: Iwao Omae

Publisher: Springer Science & Business Media

Published: 2014-01-23

Total Pages: 214

ISBN-13: 4431546049

DOWNLOAD EBOOK

This book provides a review of cyclometalation reactions and organometallic intramolecular-coordination five-membered ring products, the most active type of reactions in synthetic organic reactions and their products. Included is the discovery of intramolecular-coordination bonds in cyclometalation reactions and the characteristics of those reactions, as well as the reasons that their five-membered ring compounds are very easily synthesized through such reactions. In addition, the applications of cyclometalation reactions and five-membered ring products, synthetic applications, catalysts, and other products are described. These topics are of special interest for industrial researchers.


Ligand Design in Metal Chemistry

Ligand Design in Metal Chemistry

Author: Mark Stradiotto

Publisher: John Wiley & Sons

Published: 2016-09-01

Total Pages: 448

ISBN-13: 1118839811

DOWNLOAD EBOOK

The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales. Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics covered include: Key concepts in ligand design Redox non-innocent ligands Ligands for selective alkene metathesis Ligands in cross-coupling Ligand design in polymerization Ligand design in modern lanthanide chemistry Cooperative metal-ligand reactivity P,N Ligands for enantioselective hydrogenation Spiro-cyclic ligands in asymmetric catalysis This book will be a valuable reference for academic researchers and industry practitioners working in the field of ligand design, as well as those who work in the many areas in which the impact of ancillary ligand design has proven significant, for example synthetic organic chemistry, catalysis, medicinal chemistry, polymer science and materials chemistry.