Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.
This volume includes articles that are a sampling of modern day algebraic geometry with associated group actions from its leading experts. There are three papers examining various aspects of modular invariant theory (Broer, Elmer and Fleischmann, Shank and Wehlau), and seven papers concentrating on characteristic 0 (Brion, Daigle and Freudenberg, Greb and Heinzner, Helminck, Kostant, Kraft and Wallach, Traves).
The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS
A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.
Fuses design fundamentals and software training into one cohesive book! The only book to teach Bauhaus design principles alongside basic digital tools of Adobe's Creative Suite, including the recently released Adobe CS4 Addresses the growing trend of compressing design fundamentals and design software into the same course in universities and design trade schools. Lessons are timed to be used in 50-minute class sessions. Digital Foundations uses formal exercises of the Bauhaus to teach the Adobe Creative Suite. All students of digital design and production—whether learning in a classroom or on their own—need to understand the basic principles of design in order to implement them using current software. Far too often design is left out of books that teach software. Consequently, the design software training exercise is often a lost opportunity for visual learning. Digital Foundations reinvigorates software training by integrating Bauhaus design exercises into tutorials fusing design fundamentals and core Adobe Creative Suite methodologies. The result is a cohesive learning experience. Design topics and principles include: Composition; Symmetry and Asymmetry; Gestalt; Appropriation; The Bauhaus Basic Course Approach; Color Theory; The Grid; Scale, Hierarchy and Collage; Tonal Range; Elements of Motion. Digital Foundations is an AIGA Design Press book, published under Peachpit's New Riders imprint in partnership with AIGA, the professional association for design.
DIVIntroduction to the geometry of euclidean, affine and projective spaces with special emphasis on the important groups of symmetries of these spaces. Many exercises, extensive bibliography. Advanced undergraduate level. /div
The present book is intended as a textbook and reference work on three topics in the title. Together with a volume in progress on "Groups and Geometric Analysis" it supersedes my "Differential Geometry and Symmetric Spaces," published in 1962. Since that time several branches of the subject, particularly the function theory on symmetric spaces, have developed substantially. I felt that an expanded treatment might now be useful.
This classic book gives, in extensive tables, the irreducible representations of the crystallographic point groups and space groups. These are useful in studying the eigenvalues and eigenfunctions of a particle or quasi-particle in a crystalline solid. The theory is extended to the corepresentations of the Shubnikov groups.
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.