Symbolic Logic

Symbolic Logic

Author: David W. Agler

Publisher: Rowman & Littlefield

Published: 2013

Total Pages: 397

ISBN-13: 1442217421

DOWNLOAD EBOOK

Brimming with visual examples of concepts, derivation rules, and proof strategies, this introductory text is ideal for students with no previous experience in logic. Symbolic Logic: Syntax, Semantics, and Proof introduces students to the fundamental concepts, techniques, and topics involved in deductive reasoning. Agler guides students through the basics of symbolic logic by explaining the essentials of two classical systems, propositional and predicate logic. Students will learn translation both from formal language into English and from English into formal language; how to use truth trees and truth tables to test propositions for logical properties; and how to construct and strategically use derivation rules in proofs. This text makes this often confounding topic much more accessible with step-by-step example proofs, chapter glossaries of key terms, hundreds of homework problems and solutions for practice, and suggested further readings.


Introduction to Symbolic Logic and Its Applications

Introduction to Symbolic Logic and Its Applications

Author: Rudolf Carnap

Publisher: Courier Corporation

Published: 2012-07-12

Total Pages: 280

ISBN-13: 048614349X

DOWNLOAD EBOOK

Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.


An Introduction to Symbolic Logic

An Introduction to Symbolic Logic

Author: Langer

Publisher: Courier Corporation

Published: 1967-01-01

Total Pages: 388

ISBN-13: 9780486601649

DOWNLOAD EBOOK

Famous classic has introduced countless readers to symbolic logic with its thorough and precise exposition. Starts with simple symbols and conventions and concludes with the Boole-Schroeder and Russell-Whitehead systems. No special knowledge of mathematics necessary. "One of the clearest and simplest introductions to a subject which is very much alive." — Mathematics Gazette.


Elementary Symbolic Logic

Elementary Symbolic Logic

Author: William Gustason

Publisher: Waveland Press

Published: 1989-01-01

Total Pages: 367

ISBN-13: 1478608889

DOWNLOAD EBOOK

This volume offers a serious study of the fundamentals of symbolic logic that will neither frustrate nor bore the reader. The emphasis is on developing the students grasp of standard techniques and concepts rather than on achieving a high degree of sophistication. Coverage embraces all of the standard topics in sentential and quantificational logic, including multiple quantification, relations, and identity. Semantic and deductive topics are carefully distinguished, and appendices include an optional discussion of metatheory for sentential logic and truth trees.


Symbolic Logic 4e

Symbolic Logic 4e

Author: Dr. Daniel Kern

Publisher: Lulu.com

Published: 2016-05-31

Total Pages: 180

ISBN-13: 1365005887

DOWNLOAD EBOOK

Designed for a first, college-level course in Symbolic Logic, in class or online. Covers Sentential Logic, Natural Deduction, Truth Trees, Predicate Logic and Quantifier Logic.


Symbolic Logic and Other Forms of Deductive Reasoning

Symbolic Logic and Other Forms of Deductive Reasoning

Author: Richard L. Trammell

Publisher: Createspace Independent Publishing Platform

Published: 2016-07-11

Total Pages: 506

ISBN-13: 9781535230773

DOWNLOAD EBOOK

This text does not presuppose any technical background in math or logic. The first seven chapters cover all the basic components of a first course in symbolic logic, including truth tables, rules for devising formal proofs of validity, multiple quantifiers, properties of relations, enthymemes, and identity. (One exception is that truth trees are not discussed.) The five operator symbols used are: (.) and, (v) or, ( ) not, and also if-then, represented by the sideways U and material equivalence represented by the triple line. There are also four chapters which can be studied without symbolic logic background. Chapter 8 is a study of 7 immediate inferences in Aristotelian logic using A, E, I, O type statements with a detailed proof concerning what existential assumptions are involved. Chapter 9 is a study of classic Boolean syllogism using Venn diagrams to show the validity or invalidity of syllogisms. Chapter 10 is a study of the type of probability problems that are deductive (example: having 2 aces in 5 cards drawn from a randomized deck of cards). Chapter 11 is a study of the types of problems that are often found on standardized tests where certain data are given, and then multiple-choice questions are given where the single correct answer is determined by the data. In the symbolic logic chapters, it is shown many times how putting English statements into symbolic notation reveals the complexity (and sometimes ambiguity) of natural language. Many examples are given of the usage of logic in everyday life, with statements to translate taken from musicals, legal documents, federal tax instructions, etc. Several sections involve arguments given in English, which must be translated into symbolic notation before proof of validity is given. Chapter 7 ends with a careful presentation of Richard's Paradox, challenging those who dismiss the problem because it is not strictly mathematical. The conclusion of this chapter is the most controversial part of the text. Richard's paradox is used to construct a valid symbolic logic proof that Cantor's procedure does not prove there are nondenumerable sets, with a challenge to the reader to identify and prove which premise of the argument is false. There are several uncommon features of the text. For example, there is a section where it is shown how the rules of logic are used in solving Sudoku puzzles. Another section challenges students to devise arguments (premises and conclusion) that can be solved in a certain number of steps (say 3) only by using a certain 3 rules, one time each (for example, Modus Ponens, Simplification, and Conjunction). In proofs of invalidity, if there are 10 simple statements (for example), there are 1024 possible combinations of truth values that the 10 statements can have. But the premises and conclusions are set up so that only 1 of these combinations will make all the premises true and the conclusion false - and this 1 way can be found by forced truth-value assignments, with no need to take options. Another unusual section of the text defines the five operator symbols as relations (for example, Cxy = x conjuncted with y is true), and then statements about the operators are given to determine whether the statements are true or false. To aid in deciding what sections to cover in a given course or time frame, certain sections are labeled "optional" as an indication that understanding these sections is not presupposed by later sections in the text. Although there are a ton of problems with answers in the text, any teacher using this text for a course can receive free of charge an answer book giving answers to all the problems not answered in the text, plus a few cases of additional problems not given in the text, also with answers. Send your request to [email protected], and you will be sent an answer key using your address at the school where you teach.


Simple Formal Logic

Simple Formal Logic

Author: Arnold vander Nat

Publisher: Routledge

Published: 2010-03-05

Total Pages: 360

ISBN-13: 1135218706

DOWNLOAD EBOOK

Perfect for students with no background in logic or philosophy, Simple Formal Logic provides a full system of logic adequate to handle everyday and philosophical reasoning. By keeping out artificial techniques that aren’t natural to our everyday thinking process, Simple Formal Logic trains students to think through formal logical arguments for themselves, ingraining in them the habits of sound reasoning. Simple Formal Logic features: a companion website with abundant exercise worksheets, study supplements (including flashcards for symbolizations and for deduction rules), and instructor’s manual two levels of exercises for beginning and more advanced students a glossary of terms, abbreviations and symbols. This book arose out of a popular course that the author has taught to all types of undergraduate students at Loyola University Chicago. He teaches formal logic without the artificial methods–methods that often seek to solve farfetched logical problems without any connection to everyday and philosophical argumentation. The result is a book that teaches easy and more intuitive ways of grappling with formal logic–and is intended as a rigorous yet easy-to-follow first course in logical thinking for philosophy majors and non-philosophy majors alike.


Philosophical and Mathematical Logic

Philosophical and Mathematical Logic

Author: Harrie de Swart

Publisher: Springer

Published: 2018-11-28

Total Pages: 558

ISBN-13: 3030032558

DOWNLOAD EBOOK

This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo