This book presents the most recent methods for analyzing and visualizing symbolic data. It generalizes classical methods of exploratory, statistical and graphical data analysis to the case of complex data. Several benchmark examples from National Statistical Offices illustrate the usefulness of the methods. The book contains an extensive bibliography and a subject index.
International Association for Statistical Computing The International Association for Statistical Computing (IASC) is a Section of the International Statistical Institute. The objectives of the Association are to foster world-wide interest in e?ective statistical computing and to - change technical knowledge through international contacts and meetings - tween statisticians, computing professionals, organizations, institutions, g- ernments and the general public. The IASC organises its own Conferences, IASC World Conferences, and COMPSTAT in Europe. The 17th Conference of ERS-IASC, the biennial meeting of European - gional Section of the IASC was held in Rome August 28 - September 1, 2006. This conference took place in Rome exactly 20 years after the 7th COMP- STAT symposium which was held in Rome, in 1986. Previous COMPSTAT conferences were held in: Vienna (Austria, 1974); West-Berlin (Germany, 1976); Leiden (The Netherlands, 1978); Edimbourgh (UK, 1980); Toulouse (France, 1982); Prague (Czechoslovakia, 1984); Rome (Italy, 1986); Copenhagen (Denmark, 1988); Dubrovnik (Yugoslavia, 1990); Neuchˆ atel (Switzerland, 1992); Vienna (Austria,1994); Barcelona (Spain, 1996);Bristol(UK,1998);Utrecht(TheNetherlands,2000);Berlin(Germany, 2002); Prague (Czech Republic, 2004).
With the advent of computers, very large datasets have become routine. Standard statistical methods don’t have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis. This text presents a unified account of symbolic data, how they arise, and how they are structured. The reader is introduced to symbolic analytic methods described in the consistent statistical framework required to carry out such a summary and subsequent analysis. Presents a detailed overview of the methods and applications of symbolic data analysis. Includes numerous real examples, taken from a variety of application areas, ranging from health and social sciences, to economics and computing. Features exercises at the end of each chapter, enabling the reader to develop their understanding of the theory. Provides a supplementary website featuring links to download the SODAS software developed exclusively for symbolic data analysis, data sets, and further material. Primarily aimed at statisticians and data analysts, Symbolic Data Analysis is also ideal for scientists working on problems involving large volumes of data from a range of disciplines, including computer science, health and the social sciences. There is also much of use to graduate students of statistical data analysis courses.
Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.
Covers everything readers need to know about clustering methodology for symbolic data—including new methods and headings—while providing a focus on multi-valued list data, interval data and histogram data This book presents all of the latest developments in the field of clustering methodology for symbolic data—paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses. Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering. Provides new classification methodologies for histogram valued data reaching across many fields in data science Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data Considers classification models by dynamical clustering Features a supporting website hosting relevant data sets Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.
This volume contains a selection of papers presented at the Seven~h Confer ence of the International Federation of Classification Societies (IFCS-2000), which was held in Namur, Belgium, July 11-14,2000. From the originally sub mitted papers, a careful review process involving two reviewers per paper, led to the selection of 65 papers that were considered suitable for publication in this book. The present book contains original research contributions, innovative ap plications and overview papers in various fields within data analysis, classifi cation, and related methods. Given the fast publication process, the research results are still up-to-date and coincide with their actual presentation at the IFCS-2000 conference. The topics captured are: • Cluster analysis • Comparison of clusterings • Fuzzy clustering • Discriminant analysis • Mixture models • Analysis of relationships data • Symbolic data analysis • Regression trees • Data mining and neural networks • Pattern recognition • Multivariate data analysis • Robust data analysis • Data science and sampling The IFCS (International Federation of Classification Societies) The IFCS promotes the dissemination of technical and scientific information data analysis, classification, related methods, and their applica concerning tions.
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
It is a great honor to provide a few words of introduction for Dr. Georges Gielen's and Prof. Willy Sansen's book "Symbolic analysis for automated design of analog integrated circuits". The symbolic analysis method presented in this book represents a significant step forward in the area of analog circuit design. As demonstrated in this book, symbolic analysis opens up new possibilities for the development of computer-aided design (CAD) tools that can analyze an analog circuit topology and automatically size the components for a given set of specifications. Symbolic analysis even has the potential to improve the training of young analog circuit designers and to guide more experienced designers through second-order phenomena such as distortion. This book can also serve as an excellent reference for researchers in the analog circuit design area and creators of CAD tools, as it provides a comprehensive overview and comparison of various approaches for analog circuit design automation and an extensive bibliography. The world is essentially analog in nature, hence most electronic systems involve both analog and digital circuitry. As the number of transistors that can be integrated on a single integrated circuit (IC) substrate steadily increases over time, an ever increasing number of systems will be implemented with one, or a few, very complex ICs because of their lower production costs.
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1989.