Swarm Intelligence and Its Applications in Biomedical Informatics

Swarm Intelligence and Its Applications in Biomedical Informatics

Author: A. Sheik Abdullah

Publisher:

Published: 2024

Total Pages: 0

ISBN-13: 9781003330189

DOWNLOAD EBOOK

"Swarm Intelligence and its Applications in Biomedical Informatics discusses Artificial Intelligence applications in medicine and biology, as well as challenges and opportunities presented in these arenas. It covers healthcare big data analytics, mobile health, personalized medicine, and clinical trial data management. The book shows how Artificial Intelligence can be used for early disease diagnosis prediction and prognosis, and offers health care case studies that demonstrate the application of AI and Machine Learning"--


Swarm Intelligence and its Applications in Biomedical Informatics

Swarm Intelligence and its Applications in Biomedical Informatics

Author: A. Sheik Abdullah

Publisher: CRC Press

Published: 2023-12-14

Total Pages: 175

ISBN-13: 1003816657

DOWNLOAD EBOOK

Swarm Intelligence and Its Applications in Biomedical Informatics discusses Artificial Intelligence (AI) applications in medicine and biology, as well as challenges and opportunities presented in these arenas. It covers healthcare big data analytics, mobile health, personalized medicine, and clinical trial data management. This book shows how AI can be used for early disease diagnosis, prediction, and prognosis, and it offers healthcare case studies that demonstrate the application of AI and Machine Learning. Key Features: • Covers all major topics of swarm intelligence research and development such as novel-based search methods and novel optimization algorithm: applications of swarm intelligence to management problems and swarm intelligence for real-world application. • Provides a unique insight into the complex problems of bioinformatics and the innovative solutions which make up ‘intelligent bioinformatics’. • Covers a wide range of topics on the role of AI, Machine Learning, and Big Data for healthcare applications and deals with the ethical issues and concerns associated with it. • Explores applications in different areas of healthcare and highlights the current research. This book is designed as a reference text, and it aims primarily at advanced undergraduates and postgraduate students studying computer science and bioinformatics. Researchers and professionals will find this book useful.


Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare

Author: Adam Bohr

Publisher: Academic Press

Published: 2020-06-21

Total Pages: 385

ISBN-13: 0128184396

DOWNLOAD EBOOK

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data


Computational Intelligence and Healthcare Informatics

Computational Intelligence and Healthcare Informatics

Author: Om Prakash Jena

Publisher: John Wiley & Sons

Published: 2021-10-19

Total Pages: 434

ISBN-13: 1119818680

DOWNLOAD EBOOK

COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.


Biomedical Informatics

Biomedical Informatics

Author: Edward H. Shortliffe

Publisher: Springer Science & Business Media

Published: 2006-12-02

Total Pages: 1060

ISBN-13: 0387362789

DOWNLOAD EBOOK

This book focuses on the role of computers in the provision of medical services. It provides both a conceptual framework and a practical approach for the implementation and management of IT used to improve the delivery of health care. Inspired by a Stanford University training program, it fills the need for a high quality text in computers and medicine. It meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Completely revised and expanded, this work includes several new chapters filled with brand new material.


Artificial Intelligence in Medicine

Artificial Intelligence in Medicine

Author: David Riaño

Publisher: Springer

Published: 2019-06-19

Total Pages: 431

ISBN-13: 303021642X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.


Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics

Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics

Author: Sujata Dash

Publisher: CRC Press

Published: 2022-02-10

Total Pages: 407

ISBN-13: 1000534057

DOWNLOAD EBOOK

Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems


Artificial Intelligence in Bioinformatics

Artificial Intelligence in Bioinformatics

Author: Mario Cannataro

Publisher: Elsevier

Published: 2022-05-12

Total Pages: 270

ISBN-13: 0128229292

DOWNLOAD EBOOK

Artificial Intelligence in Bioinformatics: From Omics Analysis to Deep Learning and Network Mining reviews the main applications of the topic, from omics analysis to deep learning and network mining. The book includes a rigorous introduction on bioinformatics, also reviewing how methods are incorporated in tasks and processes. In addition, it presents methods and theory, including content for emergent fields such as Sentiment Analysis and Network Alignment. Other sections survey how Artificial Intelligence is exploited in bioinformatics applications, including sequence analysis, structure analysis, functional analysis, protein classification, omics analysis, biomarker discovery, integrative bioinformatics, protein interaction analysis, metabolic networks analysis, and much more. - Bridges the gap between computer science and bioinformatics, combining an introduction to Artificial Intelligence methods with a systematic review of its applications in the life sciences - Brings readers up-to-speed on current trends and methods in a dynamic and growing field - Provides academic teachers with a complete resource, covering fundamental concepts as well as applications


Concepts of Artificial Intelligence and its Application in Modern Healthcare Systems

Concepts of Artificial Intelligence and its Application in Modern Healthcare Systems

Author: Deepshikha Agarwal

Publisher: CRC Press

Published: 2023-07-31

Total Pages: 325

ISBN-13: 1000905993

DOWNLOAD EBOOK

This reference text presents the usage of artificial intelligence in healthcare and discusses the challenges and solutions of using advanced techniques like wearable technologies and image processing in the sector. Features: Focuses on the use of artificial intelligence (AI) in healthcare with issues, applications, and prospects Presents the application of artificial intelligence in medical imaging, fractionalization of early lung tumour detection using a low intricacy approach, etc Discusses an artificial intelligence perspective on wearable technology Analyses cardiac dynamics and assessment of arrhythmia by classifying heartbeat using electrocardiogram (ECG) Elaborates machine learning models for early diagnosis of depressive mental affliction This book serves as a reference for students and researchers analyzing healthcare data. It can also be used by graduate and post graduate students as an elective course.


Predictive Intelligence in Biomedical and Health Informatics

Predictive Intelligence in Biomedical and Health Informatics

Author: Rajshree Srivastava

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-10-12

Total Pages: 180

ISBN-13: 3110676125

DOWNLOAD EBOOK

Predictive Intelligence in Biomedical and Health Informatics focuses on imaging, computer-aided diagnosis and therapy as well as intelligent biomedical image processing and analysis. It develops computational models, methods and tools for biomedical engineering related to computer-aided diagnostics (CAD), computer-aided surgery (CAS), computational anatomy and bioinformatics. Large volumes of complex data are often a key feature of biomedical and engineering problems and computational intelligence helps to address such problems. Practical and validated solutions to hard biomedical and engineering problems can be developed by the applications of neural networks, support vector machines, reservoir computing, evolutionary optimization, biosignal processing, pattern recognition methods and other techniques to address complex problems of the real world.