Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
This book takes a unique interdisciplinary look at the latest developments, advances, and trends in the interrelated areas of sustainable engineering, energy, and the environment, focusing on environmental engineering for renewable and green energy. It looks at new research and studies on a variety of topics in green nanotechnology, green processing and solar energy, sustainable energy policies, biofuels, fuel cells, and much more. The first section of Sustainable Engineering, Energy, and the Environment: Challenges and Opportunities looks at myriad issues in sustainable energy, such as sustainable urbanism through space planning and residential building design, a method to convert vibrations from mechanical work into power, energy grid maintenance, mathematical modeling and time analysis of various mechanical activities, and more. Topics on sustainable energy include voltage systems for stand-alone nanogrids, new sources for biodiesel production, solar energy conversion, protection equipment for windmill towers, etc. The section on sustainable environment explores issues such as industrial water recycling, regeneration of spent-activated carbon in pharmaceutical production, smell mitigation and recovery of fuel from waste, the water footprint of agriculture, etc. Key features Presents advances and developments in the areas of engineering, energy, and environment under sustainable development Examines potential issues of understanding of green buildings and their energy efficiency Presents case studies on sustainable urbanization Presents novel clean technology applications for attaining environmental sustainability Assesses green auditing and natural capital accounting Describes relevant experimental techniques This book features important contributions from scientists, academicians, and professionals on the latest developments and advances in the interrelated fields of sustainable engineering, energy, and environment.
The important resource that explores the twelve design principles of sustainable environmental engineering Sustainable Environmental Engineering (SEE) is to research, design, and build Environmental Engineering Infrastructure System (EEIS) in harmony with nature using life cycle cost analysis and benefit analysis and life cycle assessment and to protect human health and environments at minimal cost. The foundations of the SEE are the twelve design principles (TDPs) with three specific rules for each principle. The TDPs attempt to transform how environmental engineering could be taught by prioritizing six design hierarchies through six different dimensions. Six design hierarchies are prevention, recovery, separation, treatment, remediation, and optimization. Six dimensions are integrated system, material economy, reliability on spatial scale, resiliency on temporal scale, and cost effectiveness. In addition, the authors, two experts in the field, introduce major computer packages that are useful to solve real environmental engineering design problems. The text presents how specific environmental engineering issues could be identified and prioritized under climate change through quantification of air, water, and soil quality indexes. For water pollution control, eight innovative technologies which are critical in the paradigm shift from the conventional environmental engineering design to water resource recovery facility (WRRF) are examined in detail. These new processes include UV disinfection, membrane separation technologies, Anammox, membrane biological reactor, struvite precipitation, Fenton process, photocatalytic oxidation of organic pollutants, as well as green infrastructure. Computer tools are provided to facilitate life cycle cost and benefit analysis of WRRF. This important resource: • Includes statistical analysis of engineering design parameters using Statistical Package for the Social Sciences (SPSS) • Presents Monte Carlos simulation using Crystal ball to quantify uncertainty and sensitivity of design parameters • Contains design methods of new energy, materials, processes, products, and system to achieve energy positive WRRF that are illustrated with Matlab • Provides information on life cycle costs in terms of capital and operation for different processes using MatLab Written for senior or graduates in environmental or chemical engineering, Sustainable Environmental Engineering defines and illustrates the TDPs of SEE. Undergraduate, graduate, and engineers should find the computer codes are useful in their EEIS design. The exercise at the end of each chapter encourages students to identify EEI engineering problems in their own city and find creative solutions by applying the TDPs. For more information, please visit www.tang.fiu.edu.
Completely revised and updated, Principles of Sustainable Energy Systems, Second Edition presents broad-based coverage of sustainable energy sources and systems. The book is designed as a text for undergraduate seniors and first-year graduate students. It focuses on renewable energy technologies, but also treats current trends such as the expanding use of natural gas from fracking and development of nuclear power. It covers the economics of sustainable energy, both from a traditional monetary as well as from an energy return on energy invested (EROI) perspective. The book provides complete and up-to-date coverage of all renewable technologies, including solar and wind power, biological processes such as anaerobic digestion and geothermal energy. The new edition also examines social issues such as food, water, population, global warming, and public policies of engineering concern. It discusses energy transition—the process by which renewable energy forms can effectively be introduced into existing energy systems to replace fossil fuels. See What’s New in the Second Edition: Extended treatment of the energy and social issues related to sustainable energy Analytic models of all energy systems in the current and future economy Thoroughly updated chapters on biomass, wind, transportation, and all types of solar power Treatment of energy return on energy invested (EROI) as a tool for understanding the sustainability of different types of resource conversion and efficiency projects Introduction of the System Advisor Model (SAM) software program, available from National Renewable Energy Lab (NREL), with examples and homework problems Coverage of current issues in transition engineering providing analytic tools that can reduce the risk of unsustainable fossil resource use Updates to all chapters on renewable energy technology engineering, in particular the chapters dealing with transportation, passive design, energy storage, ocean energy, and bioconversion Written by Frank Kreith and Susan Krumdieck, this updated version of a successful textbook takes a balanced approach that looks not only at sustainable energy sources, but also provides examples of energy storage, industrial process heat, and modern transportation. The authors take an analytical systems approach to energy engineering, rather than the more general and descriptive approach usually found in textbooks on this topic.
New information and strategies for managing the energy crisis from the perspective of growing economies are presented. Numerous case studies illustrate the particular challenges that developing countries, many of which are faced with insufficient resources, encounter. As a result, many unique strategies to the problems of energy management an conservation, environmental engineering, clean technologies, biological and chemical waste treatment and waste management have been developed.
Here is a comprehensive introductory discussion of Earth, energy, and the environment in an integrated manner that will lead to an appreciation of our complex planet. The book looks at Earth from the perspective of a livable planet and elaborates on the surface and subsurface processes and the various energy cycles where energy is transformed and stored in the planet’s various spheres. The chapters discuss the interactions between the different parts of Earth—how energy is exchanged between the atmosphere, hydrosphere, biosphere, and geosphere, and how they impact the environment in which we live.
The concept of sustainable development was first introduced by the Brundtland Commission almost 20 years ago and has received increased attention during the past decade. It is now an essential part of any energy activities. This is a research-based textbook which can be used by senior undergraduate students, graduate students, engineers, practitioners, scientists, researchers in the area of sustainable energy systems and aimed to address some key pillars: better efficiency, better cost effectiveness, better use of energy resources, better environment, better energy security, and better sustainable development. It also includes some cutting-edge topics, such hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools (exergy, constructal theory, etc.) for design, analysis and performance improvement.
Thanks to economic incentives such as tax credits, green building has become a booming trend in the construction industry. This title is intended for electrical engineers, construction managers, construction and building inspectors.
IMPLEMENT SYSTEMS ANALYSIS TOOLS IN SUSTAINABLE ENGINEERING Featuring a multidisciplinary approach, Systems Analysis for Sustainable Engineering: Theory and Applications provides a proven framework for applying systems analysis tools to account for environmental impacts, energy efficiency, cost-effectiveness, socioeconomic implications, and ecosystem health in engineering solutions. This pioneering work addresses the increased levels of sophistication embedded in many complex large-scale infrastructure systems and their interactions with the natural environment. After a detailed overview of sustainable systems engineering, the book covers mathematical theories of systems analysis, environmental resources management, industrial ecology, and sustainable design. Real-world examples highlight the methodologies presented in this authoritative resource. COVERAGE INCLUDES: Structured systems analysis for sustainable design Systems analysis and sustainable management strategies Ecomomic valuation, instruments, and project selection Statistical forecasting models Linear, nonlinear, integer, and dynamic programming models Multicriteria decision analyses System dynamics models and simulation analyses Water resources and quality management Air quality management Solid waste management Soil and groundwater remediation planning Industrial ecology and sustainability Green building and green infrastructure systems Energy resources management and energy systems engineering Land resources management and agricultural sustainability