Taking a broad and innovative informational approach, Sustainable Agriculture and New Biotechnologies is the first book to apply omic technologies to address issues related to understanding and improving agricultural sustainability in the food production process. The transformation from industrial to sustainable agriculture is discussed within the
Biotechnology for Sustainable Agriculture: Emerging Approaches and Strategies is an outstanding collection of current research that integrates basic and advanced concepts of agricultural biotechnology with future development prospects. Using biotechnology with sustainable agriculture effectively contributes to gains in agricultural productivity, enhanced food security, reduced poverty and malnutrition, and more ecologically sustainable means of food production. Written by a panel of experts, this book is unique in its coverage of the broad area of biotechnology for sustainable agriculture. It includes intriguing topics and discussions of areas such as recombinant DNA technology and genetic engineering. - Identifies and explores biotechnological tools to enhance sustainability - Encompasses plant and microbial biotechnology, nanotechnology and genetic engineering - Focuses on plant biotechnology and crop improvement to increase yield and resilience - Summarizes the impact of climate change on agriculture, fisheries and livestock
This contributed volume compiles the latest improvements in the field of biotechnology. It focuses on topics that comprises industrial, environment, agricultural and medical related issues to technology and biological studies and exhibits the correlation between the biological world and the dependence of humans on it. The book is organized into five parts covering the role of biotechnology in industrial products, environmental remediation, agriculture and pharmacological agents. Ranging from micro-scale studies to macro, it covers a huge domain of agricultural biotechnology and focuses on important commercial crops (e.g. cacao and coffee), arbuscular mycorrhizal fungi, flow and distribution of phosphorus in agricultural soils in the Latin American region. Overall, the book portrays the importance of modern biotechnology and its role in solving the problems in modern day life. The book is a ready reference for practicing students, researchers of environmental engineering, chemical engineering, agricultural engineering, and other allied fields likewise.
Transgenic crops offer the promise of increased agricultural productivity and better quality foods. But they also raise the specter of harmful environmental effects. In this new book, a panel of experts examines: • Similarities and differences between crops developed by conventional and transgenic methods • Potential for commercialized transgenic crops to change both agricultural and nonagricultural landscapes • How well the U.S. government is regulating transgenic crops to avoid any negative effects. Environmental Effects of Transgenic Plants provides a wealth of information about transgenic processes, previous experience with the introduction of novel crops, principles of risk assessment and management, the science behind current regulatory schemes, issues in monitoring transgenic products already on the market, and more. The book discusses public involvementâ€"and public confidenceâ€"in biotechnology regulation. And it looks to the future, exploring the potential of genetic engineering and the prospects for environmental effects.
Written in easy to follow language, the book presents cutting-edge agriculturally relevant plant biotechnologies and applications in a manner that is accessible to all. This book introduces the scope and method of plant biotechnologies and molecular breeding within the context of environmental analysis and assessment, a diminishing supply of productive arable land, scarce water resources and climate change. Authors who have studied how agro ecosystems have changed during the first decade and a half of commercial deployment review effects and stress needs that must be considered to make these tools sustainable.
Worldwide energy and food crises are spotlighting the importance of bio-based products - an area many are calling on for solutions to these shortages. Biocatalysis and Agricultural Biotechnology encapsulates the cutting-edge advances in the field with contributions from more than 50 international experts comprising sectors of academia, industry, an
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
A single seed is more than just the promise of a plant. In rural south India, seeds represent diverging paths toward a sustainable livelihood. Development programs and global agribusiness promote genetically modified seeds and organic certification as a path toward more sustainable cotton production, but these solutions mask a complex web of economic, social, political, and ecological issues that may have consequences as dire as death. In Cultivating Knowledge anthropologist Andrew Flachs shows how rural farmers come to plant genetically modified or certified organic cotton, sometimes during moments of agrarian crisis. Interweaving ethnographic detail, discussions of ecological knowledge, and deep history, Flachs uncovers the unintended consequences of new technologies, which offer great benefits to some—but at others’ expense. Flachs shows that farmers do not make simple cost-benefit analyses when evaluating new technologies and options. Their evaluation of development is a complex and shifting calculation of social meaning, performance, economics, and personal aspiration. Only by understanding this complicated nexus can we begin to understand sustainable agriculture. By comparing the experiences of farmers engaged with these mutually exclusive visions for the future of agriculture, Cultivating Knowledge investigates the human responses to global agrarian change. It illuminates the local impact of global changes: the slow, persistent dangers of pesticides, inequalities in rural life, the aspirations of people who grow fibers sent around the world, the place of ecological knowledge in modern agriculture, and even the complex threat of suicide. It all begins with a seed.
Nanotechnology in Sustainable Agriculture presents applications of nanobiotechnology for eco-friendly agriculture practices. Implementing sustainable agriculture techniques is a crucial component in meeting projected global food demands while minimising toxic waste in the environment. Nano-technological tools – including nanoparticles, nanocapsules, nanotubes and nanomolecules – offer sustainable options to modernise agriculture systems. Written by nanotechnology experts, this book outlines how nano-formulations can improve yield without reliance on chemecial pesticides and reduce nutrient losses in fertilization. It reveals how nanotools are used for rapid disease diagnostics, in treating plant diseases and enhancing the capacity for plants to absorb nutrients. Features: Combines nanotechnology and agronomy presenting applications for improving plant performance and yields. Reveals nanotechnology-based products used for the soil and plant health management which mitigate climate change. Discusses roles of microbial endophytes, heavy metal nanoparticles and environment health, nano-nutrients, phytochemicals, green bioengineering and plant health. This book appeals to professionals working in the agriculture and food industry, as well as agricultural scientists and researchers in nanotechnology and agronomy.
In terms of becoming a successful bioentrepreneur, there is still much more to learn. There are many ways to learn the essential fundamentals of entrepreneurship, including through the mistakes of previous businesses and models. Increased knowledge and a better understanding of what works can be derived from these previous failures and mistakes. Additionally, learning from other bioentrepreneurs can help businesses run successfully. By looking deeper into business models, product development, the fundamental concepts of bioentrepreneurship, and the essential characteristics of bioentrepreneurs, one can become better equipped to understand the role of biological sciences in entrepreneurship, specifically the role of product development. Bioentrepreneurship and Transferring Technology Into Product Development provides a comprehensive understanding of the role of biological sciences, specifically in transforming technology into commercial product. This book compiles the theoretical and practical aspects of bioentrepreneurship and discusses the various factors, including creating business plans, acquiring funding, and successful business models. The chapters also cover areas such as small-scale product development, intellectual property rights, funding schemes for start-ups, and new prospective biotechnology product development. This book is essential for bioentrepreneurs, entrepreneurs, product developers, scientists, practitioners, researchers, academicians, and students interested in product development from a biological science perspective.