Designed for use in engineering design courses, and as a reference for industry professionals learning sustainable design concepts and practical methods, Sustainability in Engineering Design focuses on designers as the driving force behind sustainable products. This book introduces sustainability concepts and explains the application of sustainable methods to the engineering design process. The book also covers important design topics such as project and team management, client management, performance prediction, and the social and environmental effects of sustainable engineering design. These concepts and methods are supported with a wealth of worked examples, discussion questions, and primary case studies to aid comprehension. - Applies research-based methods to achieve real-world results for rapidly evolving industry trends - Focuses on design engineers as the starting point of creating sustainable design - Provides practical methods and design tools to guide engineering designers in creating sustainably designed and engineering products - Incorporates all aspects of sustainable engineering design, including the material selection, production, and marketing of products - Includes cutting-edge sustainable design model case studies based on the authors' own research and experiences
Successfully Measure the Benefits of Green Design and Construction Sustainability in Engineering Design and Construction outlines the sustainable practices used in engineering design and construction operations for all types of engineering and construction projects. Aimed at ushering the engineering and construction industry into embracing sustainable practices and green construction techniques, this book addresses sustainability in engineering design and construction operations from a historical and global perspective, and delves into specific sustainability concepts and processes. The book explains the concepts of sustainable development, corporate social responsibility (CSR), the Dow Jones Global Sustainability Index (DJGSI), key performance indicators (KPIs), corporate sustainability, and the triple bottom line (economic, environmental, and social values in design and construction). Relevant to sustainability in every facet of engineering and construction, it also covers life-cycle environmental cost analysis, discusses sustainable engineering and site selection, the economic considerations evaluated when making sustainability decisions, and explains how to measure and quantify sustainable performance and apply these practices in the real world. It also covers project and corporate level sustainability practices, sustainable construction materials and processes, sustainable heavy construction equipment, traditional and alternative energy sources, provides implementation resources for starting and evaluating sustainability programs, and includes a checklist for measuring the sustainability of construction operations. The text contains detailed information on sustainable construction materials and processes, heavy construction equipment, and traditional and alternative energy sources. It presents information on sustainable designs, selecting sustainable sites, designing for passive survivability, designing for disassembly, and the ISO 14,000 standards. It provides implementation resources for starting and evaluating sustainability programs and a checklist for measuring the sustainability of construction operations In addition, it provides definitions of sustainability terms and expressions, as well as case studies, examples, discussion questions, and a list of supplemental references at the end of each chapter. This book provides information on: Definitions for sustainability terms Sources for locating global sustainability requirements Current sustainability issues Environmental laws related to sustainability and their implications Sustainable design Life-cycle cost assessment models Sustainable practices currently being used in the engineering and construction (E&C) industry Corporate-level sustainability practices Project-level sustainability practices Global sustainability trends and implications Sustainable materials Sustainable heavy construction equipment Traditional and alternative energy sources LEED Green Building Rating System Sustainability organizations and certification programs Sustainability implementation resources A summary of sustainable engineering design and construction
This book focuses on the impacts of the built environment, and how to predict and measure the benefits and consequences of changes taking place to address sustainability in the development and building industries. It draws together the best treatments of these subjects from the Leeds Sustainability Institute’s inaugural International Conference on Sustainability, Ecology, Engineering, Design for Society (SEEDS). The focus of discussion is on understanding how buildings and spaces are designed and nurtured to obtain optimal outcomes in energy efficiency and environmental impacts. In addition to examining technical issues such as modeling energy performance, emphasis is placed on the health and well-being of occupants. This holistic approach addresses the interdependence of people with the built and natural environments. The book’s contents reflect the interdisciplinary and international collaboration critical to assembly of the knowledge required for positive change.
Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes is an edited collection of contributions from leaders in their field. It takes a holistic view of sustainability in chemical and process engineering design, and incorporates economic analysis and human dimensions. Ruiz-Mercado and Cabezas have brought to this book their experience of researching sustainable process design and life cycle sustainability evaluation to assist with development in government, industry and academia. This book takes a practical, step-by-step approach to designing sustainable plants and processes by starting from chemical engineering fundamentals. This method enables readers to achieve new process design approaches with high influence and less complexity. It will also help to incorporate sustainability at the early stages of project life, and build up multiple systems level perspectives. Ruiz-Mercado and Cabezas' book is the only book on the market that looks at process sustainability from a chemical engineering fundamentals perspective. - Improve plants, processes and products with sustainability in mind; from conceptual design to life cycle assessment - Avoid retro fitting costs by planning for sustainability concerns at the start of the design process - Link sustainability to the chemical engineering fundamentals
The important resource that explores the twelve design principles of sustainable environmental engineering Sustainable Environmental Engineering (SEE) is to research, design, and build Environmental Engineering Infrastructure System (EEIS) in harmony with nature using life cycle cost analysis and benefit analysis and life cycle assessment and to protect human health and environments at minimal cost. The foundations of the SEE are the twelve design principles (TDPs) with three specific rules for each principle. The TDPs attempt to transform how environmental engineering could be taught by prioritizing six design hierarchies through six different dimensions. Six design hierarchies are prevention, recovery, separation, treatment, remediation, and optimization. Six dimensions are integrated system, material economy, reliability on spatial scale, resiliency on temporal scale, and cost effectiveness. In addition, the authors, two experts in the field, introduce major computer packages that are useful to solve real environmental engineering design problems. The text presents how specific environmental engineering issues could be identified and prioritized under climate change through quantification of air, water, and soil quality indexes. For water pollution control, eight innovative technologies which are critical in the paradigm shift from the conventional environmental engineering design to water resource recovery facility (WRRF) are examined in detail. These new processes include UV disinfection, membrane separation technologies, Anammox, membrane biological reactor, struvite precipitation, Fenton process, photocatalytic oxidation of organic pollutants, as well as green infrastructure. Computer tools are provided to facilitate life cycle cost and benefit analysis of WRRF. This important resource: • Includes statistical analysis of engineering design parameters using Statistical Package for the Social Sciences (SPSS) • Presents Monte Carlos simulation using Crystal ball to quantify uncertainty and sensitivity of design parameters • Contains design methods of new energy, materials, processes, products, and system to achieve energy positive WRRF that are illustrated with Matlab • Provides information on life cycle costs in terms of capital and operation for different processes using MatLab Written for senior or graduates in environmental or chemical engineering, Sustainable Environmental Engineering defines and illustrates the TDPs of SEE. Undergraduate, graduate, and engineers should find the computer codes are useful in their EEIS design. The exercise at the end of each chapter encourages students to identify EEI engineering problems in their own city and find creative solutions by applying the TDPs. For more information, please visit www.tang.fiu.edu.
This book explores sustainability engineering through the lens of the manufacturing and chemical process industries to elucidate the safe and economic implementation of process designs used to transform raw materials into useful finished products. The author applies the tenets of sustainability science to develop an engineering methodology that supports the perpetual availability of raw materials through recycling/reuse/repurposing, incorporates inexhaustible supplies, such as solar energy and municipal waste, and encompasses the husbandry of these resources in a manner that minimizes negative environmental impacts. Anyone involved in the design or manufacture of chemicals, or the upgrade of existing manufacturing processes, will benefit from this book’s suggestions for identifying improvement options, while adding the pivotal aspect of sustainability to the usual cost and safety equation optimization elements.
Assessing Engineering Designs for Environmental, Economic, and Social Impact Engineers will play a central role in addressing one of the twenty-first century’s key challenges: the development of new technologies that address societal needs and wants within the constraints imposed by limited natural resources and the need to protect environmental systems. To create tomorrow’s sustainable products, engineers must carefully consider environmental, economic, and social factors in evaluating their designs. Fortunately, quantitative tools for incorporating sustainability concepts into engineering designs and performance metrics are now emerging. Sustainable Engineering introduces these tools and shows how to apply them. Building on widely accepted principles they first introduced in Green Engineering, David T. Allen and David R. Shonnard discuss key aspects of designing sustainable systems in any engineering discipline. Their powerful, unified approach integrates essential engineering and quantitative design skills, industry perspectives, and case studies, enabling engineering professionals, educators, and students to incorporate sustainability throughout their work. Coverage includes A concise review of the natural resource and environmental challenges engineers face when designing for sustainability Analysis and legislative frameworks for addressing environmental issues and sustainability Methods for identifying green and sustainable materials Principles for improving the sustainability of engineering designs Tools for evaluating sustainable designs and monetizing their benefits
Scientific Principles to Guide Sustainable Design Decisions From thermodynamics to fluid dynamics to computational chemistry, this book sets forth the scientific principles underlying the need for sustainable design, explaining not just the "hows" of sustainable design and green engineering, but also the "whys." Moreover, it provides readers with the scientific principles needed to guide their own sustainable design decisions. Throughout the book, the authors draw from their experience in architecture, civil engineering, environmental engineering, planning, and public policy in order to build an understanding of the interdisciplinary nature of sustainable design. Written to enable readers to take a more scientific approach to sustainable design, the book offers many practical features, including: Case studies presenting the authors' firsthand accounts of actual green projects Lessons learned from Duke University's Smart House Program that demonstrate the concepts and techniques discussed in the book Exercises that encourage readers to use their newfound knowledge to solve green design problems Figures, tables, and sidebars illustrating key concepts and summarizing important points For architects, designers, and engineers, this book enables them to not only implement green design methods, but also to choose these methods based on science. With its many examples, case studies, and exercises, the book is also an ideal textbook for students in civil and environmental engineering, construction, and architectural engineering.
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.