This book explains the ecology of viruses by examining their interactive dynamics with their hosting species (in this volume, in microbes and plants), including the types of transmission cycles that viruses have evolved encompassing principal and alternate hosts, vehicles, and vectoring species. Examining virology from an organismal biology approach and focusing on the concept that viral infections represent areas of overlap in the ecologies of the involved species, Viral Ecology is essential for students and professionals who either may be non-virologists or virologists whose previous familiarity has been very specialized.
This book explains the ecology of viruses by examining their interactive dynamics with their hosting species (in this volume, in animals), including the types of transmission cycles that viruses have evolved encompassing principal and alternate hosts, vehicles and vectoring species. Examining virology from an organismal biology approach and focusing on the concept that viral infections represent areas of overlap in the ecologies of the involved species, Viral Ecology is essential for students and professionals who either may be non-virologists or virologists whose previous familiarity has been very specialized.
Viral Ecology defines and explains the ecology of viruses by examining their interactions with their hosting species, including the types of transmission cycles that have evolved, encompassing principal and alternate hosts, vehicles, and vectors. It examines virology from an organismal biology approach, focusing on the concept that viral infections represent areas of overlap in the ecology of viruses, their hosts, and their vectors. The relationship between viruses and their hosting species The concept that viral interactions with their hosts represents a highly evolved aspect of organismal biology The types of transmission cycles which exist for viruses, including their hosts, vectors, and vehicles The concept that viral infections represent areas of overlap in the ecology of the viruses, their hosts, and their vectors
Published since 1953, Advances in Virus Research covers a diverse range of in-depth reviews providing a valuable overview of the current field of virology. In 2004, the Institute for Scientific Information released figures showing that the series has an Impact Factor of 2.576, with a half-life of 7.1 years, placing it 11th in the highly competitive category of Virology.
Viruses: Molecular Biology, Host Interactions, and Applications to Biotechnology provides an up-to-date introduction to human, animal and plant viruses within the context of recent advances in high-throughput sequencing that have demonstrated that viruses are vastly greater and more diverse than previously recognized. It covers discoveries such as the Mimivirus and its virophage which have stimulated new discussions on the definition of viruses, their place in the current view, and their inherent and derived 'interactomics' as defined by the molecules and the processes by which virus gene products interact with themselves and their host's cellular gene products. Further, the book includes perspectives on basic aspects of virology, including the structure of viruses, the organization of their genomes, and basic strategies in replication and expression, emphasizing the diversity and versatility of viruses, how they cause disease and how their hosts react to such disease, and exploring developments in the field of host-microbe interactions in recent years. The book is likely to appeal, and be useful, to a wide audience that includes students, academics and researchers studying the molecular biology and applications of viruses - Provides key insights into recent technological advances, including high-throughput sequencing - Presents viruses not only as formidable foes, but also as entities that can be beneficial to their hosts and humankind that are helping to shape the tree of life - Features exposition on the diversity and versatility of viruses, how they cause disease, and an exploration of virus-host interactions
While the study of viral evolution has developed rapidly in the last 30 years, little attention has been directed toward linking the mechanisms of viral evolution to the epidemiological outcomes of these processes. This book intends to fill this gap by considering the patterns and processes of viral evolution at all its spatial and temporal scales.
This volume summarizes recent advances in environmental microbiology by providing fascinating insights into the diversity of microbial life that exists on our planet. The first two chapters present theoretical perspectives that help to consolidate our understanding of evolution as an adaptive process by which the niche and habitat of each species develop in a manner that interconnects individual components of an ecosystem. This results in communities that function by simultaneously coordinating their metabolic and physiologic actions. The third contribution addresses the fossil record of microorganisms, and the subsequent chapters then introduce the microbial life that currently exists in various terrestrial and aquatic ecosystems. Coverage of the geosphere addresses endolithic organisms, life in caves and the deep continental biosphere, including how subsurface microbial life may impact spent nuclear fuel repositories. The discussion of the hydrosphere includes hypersaline environments and arctic food chains. By better understanding examples from the micro biosphere, we can elucidate the many ways in which the niches of different species, both large and small, interconnect within the overlapping habitats of this world, which is governed by its microorganisms.
Plant Sciences Reviews 2012 provides scientists and students with analysis on key topics in current research, including plant diseases, genetics, climate impacts, biofuels and postharvest. Experts such as Frances Seymour, Roger Jones, Paul Christou and Errol Hewitt provide incisive reviews of their fields. Originally published online in CAB Reviews, this volume makes available in printed form the reviews in plant science published during 2012.
Before 1910 the American chestnut was one of the most common trees in the eastern United States. Although historical evidence suggests the natural distribution of the American chestnut extended across more than four hundred thousand square miles of territory—an area stretching from eastern Maine to southeast Louisiana—stands of the trees could also be found in parts of Wisconsin, Michigan, Washington State, and Oregon. An important natural resource, chestnut wood was preferred for woodworking, fencing, and building construction, as it was rot resistant and straight grained. The hearty and delicious nuts also fed wildlife, people, and livestock. Ironically, the tree that most piqued the emotions of nineteenth- and early twentieth-century Americans has virtually disappeared from the eastern United States. After a blight fungus was introduced into the United States during the late nineteenth century, the American chestnut became functionally extinct. Although the virtual eradication of the species caused one of the greatest ecological catastrophes since the last ice age, considerable folklore about the American chestnut remains. Some of the tree’s history dates to the very founding of our country, making the story of the American chestnut an integral part of American cultural and environmental history. The American Chestnut tells the story of the American chestnut from Native American prehistory through the Civil War and the Great Depression. Davis documents the tree’s impact on nineteenth-and early twentieth-century American life, including the decorative and culinary arts. While he pays much attention to the importation of chestnut blight and the tree’s decline as a dominant species, the author also evaluates efforts to restore the American chestnut to its former place in the eastern deciduous forest, including modern attempts to genetically modify the species.
Next Generation Sequencing technologies are increasingly revealing that microbial taxa likely to be parasites or symbionts are probably much more prevalent and diverse than previously thought. Every well studied free-living species has parasites; parasites themselves can be parasitized. As a rule of thumb, there is an estimated 4 parasitic species for any given host, and the better a host is studied the more parasites are known to infect it. Therefore, parasites and other symbionts should represent a very large number of species and may far outnumber those with 'free-living' lifestyles. Paradoxically, free-living hosts, which form the bulk of our knowledge of biology, may be a minority! Microbial parasites typically are characterized by their small size, short generation time, and high rates of reproduction, with simple life cycle occurring generally within a single host. They are diverse and ubiquitous in the environment, comprising viruses, prokaryotes and eukaryotes. This Frontiers Research Topic sought to provide a broad overview but concise, comprehensive, well referenced and up-to-date state of the art for everyone involved with microbial parasites in aquatic microbial ecology.