Pattern Recognition and Classification

Pattern Recognition and Classification

Author: Geoff Dougherty

Publisher: Springer Science & Business Media

Published: 2012-10-28

Total Pages: 203

ISBN-13: 1461453232

DOWNLOAD EBOOK

The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.


Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning

Author: Christopher M. Bishop

Publisher: Springer

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9781493938438

DOWNLOAD EBOOK

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.


Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning

Author: King-Sun Fu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 350

ISBN-13: 1461575664

DOWNLOAD EBOOK

This book contains the Proceedings of the US-Japan Seminar on Learning Process in Control Systems. The seminar, held in Nagoya, Japan, from August 18 to 20, 1970, was sponsored by the US-Japan Cooperative Science Program, jointly supported by the National Science Foundation and the Japan Society for the Promotion of Science. The full texts of all the presented papers except two t are included. The papers cover a great variety of topics related to learning processes and systems, ranging from pattern recognition to systems identification, from learning control to biological modelling. In order to reflect the actual content of the book, the present title was selected. All the twenty-eight papers are roughly divided into two parts--Pattern Recognition and System Identification and Learning Process and Learning Control. It is sometimes quite obvious that some papers can be classified into either part. The choice in these cases was strictly the editor's in order to keep a certain balance between the two parts. During the past decade there has been a considerable growth of interest in problems of pattern recognition and machine learn ing. In designing an optimal pattern recognition or control system, if all the a priori information about the process under study is known and can be described deterministically, the optimal system is usually designed by deterministic optimization techniques.


Fundamentals of Pattern Recognition and Machine Learning

Fundamentals of Pattern Recognition and Machine Learning

Author: Ulisses Braga-Neto

Publisher: Springer Nature

Published: 2020-09-10

Total Pages: 357

ISBN-13: 3030276562

DOWNLOAD EBOOK

Fundamentals of Pattern Recognition and Machine Learning is designed for a one or two-semester introductory course in Pattern Recognition or Machine Learning at the graduate or advanced undergraduate level. The book combines theory and practice and is suitable to the classroom and self-study. It has grown out of lecture notes and assignments that the author has developed while teaching classes on this topic for the past 13 years at Texas A&M University. The book is intended to be concise but thorough. It does not attempt an encyclopedic approach, but covers in significant detail the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as Gaussian process regression and convolutional neural networks. In addition, the selection of topics has a few features that are unique among comparable texts: it contains an extensive chapter on classifier error estimation, as well as sections on Bayesian classification, Bayesian error estimation, separate sampling, and rank-based classification. The book is mathematically rigorous and covers the classical theorems in the area. Nevertheless, an effort is made in the book to strike a balance between theory and practice. In particular, examples with datasets from applications in bioinformatics and materials informatics are used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and scikit-learn. All plots in the text were generated using python scripts, which are also available on the book website.


Introduction to Statistical Pattern Recognition

Introduction to Statistical Pattern Recognition

Author: Keinosuke Fukunaga

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 606

ISBN-13: 0080478654

DOWNLOAD EBOOK

This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.


Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Author: Chi Hau Chen

Publisher: World Scientific

Published: 1999-03-12

Total Pages: 1045

ISBN-13: 9814497649

DOWNLOAD EBOOK

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.


Statistical Pattern Recognition

Statistical Pattern Recognition

Author: Andrew R. Webb

Publisher: John Wiley & Sons

Published: 2003-07-25

Total Pages: 516

ISBN-13: 0470854782

DOWNLOAD EBOOK

Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a


Pattern Recognition Applications and Methods

Pattern Recognition Applications and Methods

Author: Maria De Marsico

Publisher: Springer Nature

Published: 2020-01-24

Total Pages: 170

ISBN-13: 303040014X

DOWNLOAD EBOOK

This book contains revised and extended versions of selected papers from the 8th International Conference on Pattern Recognition, ICPRAM 2019, held in Prague, Czech Republic, in February 2019. The 25 full papers presented together 52 short papers and 32 poster sessions were carefully reviewed and selected from 138 initial submissions. Contributions describing applications of Pattern Recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance Pattern Recognition methods are especially encouraged.


Correlation Pattern Recognition

Correlation Pattern Recognition

Author: B. V. K. Vijaya Kumar

Publisher: Cambridge University Press

Published: 2005-11-24

Total Pages: 404

ISBN-13: 1139447122

DOWNLOAD EBOOK

Correlation is a robust and general technique for pattern recognition and is used in many applications, such as automatic target recognition, biometric recognition and optical character recognition. The design, analysis and use of correlation pattern recognition algorithms requires background information, including linear systems theory, random variables and processes, matrix/vector methods, detection and estimation theory, digital signal processing and optical processing. This book provides a needed review of this diverse background material and develops the signal processing theory, the pattern recognition metrics, and the practical application know-how from basic premises. It shows both digital and optical implementations. It also contains technology presented by the team that developed it and includes case studies of significant interest, such as face and fingerprint recognition. Suitable for graduate students taking courses in pattern recognition theory, whilst reaching technical levels of interest to the professional practitioner.


Applied Pattern Recognition

Applied Pattern Recognition

Author: Horst Bunke

Publisher: Springer

Published: 2008-02-28

Total Pages: 251

ISBN-13: 3540768319

DOWNLOAD EBOOK

A sharp increase in the computing power of modern computers has triggered the development of powerful algorithms that can analyze complex patterns in large amounts of data within a short time period. Consequently, it has become possible to apply pattern recognition techniques to new tasks. The main goal of this book is to cover some of the latest application domains of pattern recognition while presenting novel techniques that have been developed or customized in those domains.