The Physics of Glassy Polymers

The Physics of Glassy Polymers

Author: R. N. Haward

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 635

ISBN-13: 9401023557

DOWNLOAD EBOOK

This work sets out to provide an up-to-date account of the physical properties and structure of polymers in the glassy state. Properties measured above the glass transition temperature are therefore included only in so far as is necessary for the treatment of the glass transition process. This approach to the subject therefore excludes any detailed account of rubber elasticity or melt rheology or of the structure and conformation of the long chain molecule in solution, although knowledge derived from this field is assumed where required. Major emphasis is placed on structural and mechanical properties, although a number of other physical properties are included. Naturally the different authors contributing to the book write mainly from their own particular points of view and where there are several widely accepted theoretical approaches to a subject, these are sometimes provided in different chapters which will necessarily overlap to a significant extent. For example, the main theoretical presentation on the subject of glass transition is given in Chapter 1. This is supplemented by accounts of the free volume theory in Chapter 3 and in the Introduction, and a short account of the work of Gibbs and DiMarzio, also in Chapter 3. Similarly, there is material on solvent cracking in Chapters 7 and 9, though the two workers approach the subject from opposite directions. Every effort has therefore been made to encourage cross-referencing between different chapters.


Structure and Properties of Glassy Polymers

Structure and Properties of Glassy Polymers

Author: Martin R. Tant

Publisher:

Published: 1998

Total Pages: 484

ISBN-13:

DOWNLOAD EBOOK

In twenty-nine chapters by leading authorities, Structure and Properties of Glassy Polymers provides readers with comprehensive coverage of basic and applied research on glass polymers as well as a wealth of information on current topics such as molecular modeling, characterization, polymer glasses in confined spaces, and conducting glass polymers. The characterization techniques presented include temperature-modulated differential scanning calorimetry, dielectric loss spectroscopy, photochemical hole burning, positron annihilation lifetime spectroscopy, and transient current generation.


Mechanical Properties and Testing of Polymers

Mechanical Properties and Testing of Polymers

Author: G.M. Swallowe

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 313

ISBN-13: 9401592314

DOWNLOAD EBOOK

This volume represents a continuation of the Polymer Science and Technology series edited by Dr. D. M. Brewis and Professor D. Briggs. The theme of the series is the production of a number of stand alone volumes on various areas of polymer science and technology. Each volume contains short articles by a variety of expert contributors outlining a particular topic and these articles are extensively cross referenced. References to related topics included in the volume are indicated by bold text in the articles, the bold text being the title of the relevant article. At the end of each article there is a list of bibliographic references where interested readers can obtain further detailed information on the subject of the article. This volume was produced at the invitation of Derek Brewis who asked me to edit a text which concentrated on the mechanical properties of polymers. There are already many excellent books on the mechanical properties of polymers, and a somewhat lesser number of volumes dealing with methods of carrying out mechanical tests on polymers. Some of these books are listed in Appendix 1. In this volume I have attempted to cover basic mechanical properties and test methods as well as the theory of polymer mechanical deformation and hope that the reader will find the approach useful.


The Physics of Deformation and Fracture of Polymers

The Physics of Deformation and Fracture of Polymers

Author: A. S. Argon

Publisher: Cambridge University Press

Published: 2013-03-07

Total Pages: 535

ISBN-13: 0521821843

DOWNLOAD EBOOK

A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.


Encyclopedia of Membranes

Encyclopedia of Membranes

Author: Enrico Drioli

Publisher: Springer

Published: 2016-07-14

Total Pages: 1100

ISBN-13: 9783662443231

DOWNLOAD EBOOK

A landmark work covering the major aspects of the science, technology and application of membrane operations and related fields, from basic phenomena to the most advanced applications and future perspectives. Over 1500 concise entries in an A-Z format cover a vibrant field with a multitude of applications in diverse disciplines such as biotechnology, medicine, agro-food and petrochemical industries, environmental protection, as well as drinking water supply. Coverage includes membrane reactors and catalytic design (catalytic membrane reactors). Practically all unit operations of process engineering can be redesigned as membrane unit operations (e. g. membrane distillation, membrane crystallization, membrane stripping, membrane scrubbing). Entries are provided by an international team of experts from academia, research institutions as well as from industry.


The Physics of Glassy Polymers

The Physics of Glassy Polymers

Author: R.N. Haward

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 513

ISBN-13: 9401158509

DOWNLOAD EBOOK

Since the publication of the first edition of The Physics of Glassy Polymers there have been substantial developments in both the theory and application of polymer physics, and many new materials have been introduced. Furthermore, in this large and growing field of knowledge, glassy polymers are of particular interest because of their homogeneous structure, which is fundamentally simpler than that of crystalline or reinforced materials. This new edition covers all these developments, including the emergence of the polymer molecule with its multiplicity of structure and conformations as the major factor controlling the properties of glassy polymers, using the combined knowledge of a distinguished team of contributors. With an introductory chapter covering the established science in the subject are and summarising concepts assumed in the later chapters, this fully revised and updated second edition is an essential work of reference for those involved in the field.


Structure—Property Relationships in Polymers

Structure—Property Relationships in Polymers

Author: Charles E. Carraher Jr.

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 1468447483

DOWNLOAD EBOOK

The first concern of scientists who are interested in synthetic polymers has always been, and still is: How are they synthesized? But right after this comes the question: What have I made, and for what is it good? This leads to the important topic of the structure-property relations to which this book is devoted. Polymers are very large and very complicated systems; their character ization has to begin with the chemical composition, configuration, and con formation of the individual molecule. The first chapter is devoted to this broad objective. The immediate physical consequences, discussed in the second chapter, form the basis for the physical nature of polymers: the supermolecular interactions and arrangements of the individual macromolecules. The third chapter deals with the important question: How are these chemical and physical structures experimentally determined? The existing methods for polymer characterization are enumerated and discussed in this chapter. The following chapters go into more detail. For most applications-textiles, films, molded or extruded objects of all kinds-the mechanical and the thermal behaviors of polymers are of pre ponderant importance, followed by optical and electric properties. Chapters 4 through 9 describe how such properties are rooted in and dependent on the chemical structure. More-detailed considerations are given to certain particularly important and critical properties such as the solubility and permeability of polymeric systems. Macromolecules are not always the final goal of the chemist-they may act as intermediates, reactants, or catalysts. This topic is presented in Chapters 10 and 11.


Biosurfaces

Biosurfaces

Author: Kantesh Balani

Publisher: John Wiley & Sons

Published: 2015-01-23

Total Pages: 465

ISBN-13: 111895064X

DOWNLOAD EBOOK

Ideal as a graduate textbook, this title is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout. Highlights include: Starts with concepts and works up to real-life applications such as implantable devices, medical devices, prosthetics, and drug delivery technology Addresses surface reactivity, requirements for surface coating, cleaning and preparation techniques, and characterization Discusses the biological response to coatings Addresses biomaterial-tissue interaction Incorporates nanomechanical properties and processing strategies


Properties of Polymers

Properties of Polymers

Author: D.W. van Krevelen

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 898

ISBN-13: 0444596127

DOWNLOAD EBOOK

Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions summarizes the latest developments regarding polymers, their properties in relation to chemical structure, and methods for estimating and predicting numerical properties from chemical structure. In particular, it examines polymer electrical properties, magnetic properties, and mechanical properties, as well as their crystallization and environmental behavior and failure. The rheological properties of polymer melts and polymer solutions are also considered. Organized into seven parts encompassing 27 chapters, this book begins with an overview of polymer science and engineering, including the typology of polymers and their properties. It then turns to a discussion of thermophysical properties, from transition temperatures to volumetric and calorimetric properties, along with the cohesive aspects and conformation statistics. It also introduces the reader to the behavior of polymers in electromagnetic and mechanical fields of force. The book covers the quantities that influence the transport of heat, momentum, and matter, particularly heat conductivity, viscosity, and diffusivity; properties that control the chemical stability and breakdown of polymers; and polymer properties as an integral concept, with emphasis on processing and product properties. Readers will find tables that give valuable (numerical) data on polymers and include a survey of the group contributions (increments) of almost every additive function considered. This book is a valuable resource for anyone working on practical problems in the field of polymers, including organic chemists, chemical engineers, polymer processers, polymer technologists, and both graduate and PhD students.