Optimization And Anti-optimization Of Structures Under Uncertainty

Optimization And Anti-optimization Of Structures Under Uncertainty

Author: Isaac E Elishakoff

Publisher: World Scientific

Published: 2010-03-08

Total Pages: 425

ISBN-13: 190897818X

DOWNLOAD EBOOK

The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering./a


Structural Design Optimization Considering Uncertainties

Structural Design Optimization Considering Uncertainties

Author: Yannis Tsompanakis

Publisher: CRC Press

Published: 2008-02-07

Total Pages: 670

ISBN-13: 0203938526

DOWNLOAD EBOOK

Uncertainties play a dominant role in the design and optimization of structures and infrastructures. In optimum design of structural systems due to variations of the material, manufacturing variations, variations of the external loads and modelling uncertainty, the parameters of a structure, a structural system and its environment are not given, fi


Structural Optimization with Uncertainties

Structural Optimization with Uncertainties

Author: N.V. Banichuk

Publisher: Springer Science & Business Media

Published: 2009-12-01

Total Pages: 231

ISBN-13: 9048125189

DOWNLOAD EBOOK

Structural optimization is currently attracting considerable attention. Interest in - search in optimal design has grown in connection with the rapid development of aeronautical and space technologies, shipbuilding, and design of precision mach- ery. A special ?eld in these investigations is devoted to structural optimization with incomplete information (incomplete data). The importance of these investigations is explained as follows. The conventional theory of optimal structural design - sumes precise knowledge of material parameters, including damage characteristics and loadings applied to the structure. In practice such precise knowledge is seldom available. Thus, it is important to be able to predict the sensitivity of a designed structure to random ?uctuations in the environment and to variations in the material properties. To design reliable structures it is necessary to apply the so-called gu- anteed approach, based on a “worst case scenario” or a more optimistic probabilistic approach, if we have additional statistical data. Problems of optimal design with incomplete information also have consid- able theoretical importance. The introduction and investigations into new types of mathematical problems are interesting in themselves. Note that some ga- theoretical optimization problems arise for which there are no systematic techniques of investigation. This monograph is devoted to the exposition of new ways of formulating and solving problems of structural optimization with incomplete information. We recall some research results concerning the optimum shape and structural properties of bodies subjected to external loadings.


Optimization and Anti-optimization of Structures Under Uncertainty

Optimization and Anti-optimization of Structures Under Uncertainty

Author: Isaac Elishakoff

Publisher: World Scientific

Published: 2010

Total Pages: 425

ISBN-13: 1848164785

DOWNLOAD EBOOK

The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering.


Uncertainty and Optimization in Structural Mechanics

Uncertainty and Optimization in Structural Mechanics

Author: Abdelkhalak El Hami

Publisher: John Wiley & Sons

Published: 2013-04-08

Total Pages: 149

ISBN-13: 1118711831

DOWNLOAD EBOOK

Optimization is generally a reduction operation of a definite quantity. This process naturally takes place in our environment and through our activities. For example, many natural systems evolve, in order to minimize their potential energy. Modeling these phenomena then largely relies on our capacity to artificially reproduce these processes. In parallel, optimization problems have quickly emerged from human activities, notably from economic concerns. This book includes the most recent ideas coming from research and industry in the field of optimization, reliability and the recognition of accompanying uncertainties. It is made up of eight chapters which look at the reviewing of uncertainty tools, system reliability, optimal design of structures and their optimization (of sizing, form, topology and multi-objectives) – along with their robustness and issues on optimal safety factors. Optimization reliability coupling will also be tackled in order to take into account the uncertainties in the modeling and resolution of the problems encountered. The book is aimed at students, lecturers, engineers, PhD students and researchers. Contents 1. Uncertainty. 2. Reliability in Mechanical Systems. 3. Optimal Structural Design. 4. Multi-object Optimization with Uncertainty. 5. Robust Optimization. 6. Reliability Optimization. 7. Optimal Security Factors Approach. 8. Reliability-based Topology Optimization. About the Authors Abdelkhalak El Hami is Professor at the Institut National des Sciences Appliquées, Rouen, France. He is the author of many articles and books on optimization and uncertainty. Bouchaib Radi is Professor in the Faculty of Sciences and Technology at the University of Hassan Premier, Settat, Morocco. His research interests are in such areas as structural optimization, parallel computation, contact problem and metal forming. He is the author of many scientific articles and books.


Stochastic Structural Optimization

Stochastic Structural Optimization

Author: Makoto Yamakawa

Publisher: CRC Press

Published: 2023-08-08

Total Pages: 267

ISBN-13: 1000912701

DOWNLOAD EBOOK

Stochastic Structural Optimization presents a comprehensive picture of robust design optimization of structures, focused on nonparametric stochastic-based methodologies. Good practical structural design accounts for uncertainty, for which reliability-based design offers a standard approach, usually incorporating assumptions on probability functions which are often unknown. By comparison, a worst-case approach with bounded support used as a robust design offers simplicity and a lower level of sensitivity. Linking structural optimization with these two approaches by a unified framework of non-parametric stochastic methodologies provides a rigorous theoretical background and high level of practicality. This text shows how to use this theoretical framework in civil and mechanical engineering practice to design a safe structure which accounts for uncertainty. Connects theory with practice in the robust design optimization of structures Advanced enough to support sound practical designs This book provides comprehensive coverage for engineers and graduate students in civil and mechanical engineering. Makoto Yamakawa is a Professor at Tokyo University of Science, and a member of the Advisory Board of the 2020 Asian Congress of Structural and Multidisciplinary Optimization. Makoto Ohsaki is a Professor at Kyoto University, Japan, treasurer of the International Association for Shell & Spatial Structures and former President of the Asian Society for Structural and Multidisciplinary Optimization.


Frontiers in Global Optimization

Frontiers in Global Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 590

ISBN-13: 146130251X

DOWNLOAD EBOOK

Global Optimization has emerged as one of the most exciting new areas of mathematical programming. Global optimization has received a wide attraction from many fields in the past few years, due to the success of new algorithms for addressing previously intractable problems from diverse areas such as computational chemistry and biology, biomedicine, structural optimization, computer sciences, operations research, economics, and engineering design and control. This book contains refereed invited papers submitted at the 4th international confer ence on Frontiers in Global Optimization held at Santorini, Greece during June 8-12, 2003. Santorini is one of the few sites of Greece, with wild beauty created by the explosion of a volcano which is in the middle of the gulf of the island. The mystic landscape with its numerous mult-extrema, was an inspiring location particularly for researchers working on global optimization. The three previous conferences on "Recent Advances in Global Opti mization", "State-of-the-Art in Global Optimization", and "Optimization in Computational Chemistry and Molecular Biology: Local and Global approaches" took place at Princeton University in 1991, 1995, and 1999, respectively. The papers in this volume focus on de terministic methods for global optimization, stochastic methods for global optimization, distributed computing methods in global optimization, and applications of global optimiza tion in several branches of applied science and engineering, computer science, computational chemistry, structural biology, and bio-informatics.


Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications

Author: Plevris, Vagelis

Publisher: IGI Global

Published: 2012-05-31

Total Pages: 456

ISBN-13: 1466616415

DOWNLOAD EBOOK

Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.