Structural Equations with Latent Variables

Structural Equations with Latent Variables

Author: Kenneth A. Bollen

Publisher: John Wiley & Sons

Published: 2014-08-28

Total Pages: 528

ISBN-13: 111861903X

DOWNLOAD EBOOK

Analysis of Ordinal Categorical Data Alan Agresti Statistical Science Now has its first coordinated manual of methods for analyzing ordered categorical data. This book discusses specialized models that, unlike standard methods underlying nominal categorical data, efficiently use the information on ordering. It begins with an introduction to basic descriptive and inferential methods for categorical data, and then gives thorough coverage of the most current developments, such as loglinear and logit models for ordinal data. Special emphasis is placed on interpretation and application of methods and contains an integrated comparison of the available strategies for analyzing ordinal data. This is a case study work with illuminating examples taken from across the wide spectrum of ordinal categorical applications. 1984 (0 471-89055-3) 287 pp. Regression Diagnostics Identifying Influential Data and Sources of Collinearity David A. Belsley, Edwin Kuh and Roy E. Welsch This book provides the practicing statistician and econometrician with new tools for assessing the quality and reliability of regression estimates. Diagnostic techniques are developed that aid in the systematic location of data points that are either unusual or inordinately influential; measure the presence and intensity of collinear relations among the regression data and help to identify the variables involved in each; and pinpoint the estimated coefficients that are potentially most adversely affected. The primary emphasis of these contributions is on diagnostics, but suggestions for remedial action are given and illustrated. 1980 (0 471-05856-4) 292 pp. Applied Regression Analysis Second Edition Norman Draper and Harry Smith Featuring a significant expansion of material reflecting recent advances, here is a complete and up-to-date introduction to the fundamentals of regression analysis, focusing on understanding the latest concepts and applications of these methods. The authors thoroughly explore the fitting and checking of both linear and nonlinear regression models, using small or large data sets and pocket or high-speed computing equipment. Features added to this Second Edition include the practical implications of linear regression; the Durbin-Watson test for serial correlation; families of transformations; inverse, ridge, latent root and robust regression; and nonlinear growth models. Includes many new exercises and worked examples. 1981 (0 471-02995-5) 709 pp.


Latent Curve Models

Latent Curve Models

Author: Kenneth A. Bollen

Publisher: John Wiley & Sons

Published: 2005-12-23

Total Pages: 312

ISBN-13: 047145592X

DOWNLOAD EBOOK

An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.


Latent Variable Models

Latent Variable Models

Author: John C. Loehlin

Publisher: Psychology Press

Published: 2004-05-20

Total Pages: 303

ISBN-13: 1135614342

DOWNLOAD EBOOK

This book introduces multiple-latent variable models by utilizing path diagrams to explain the underlying relationships in the models. This approach helps less mathematically inclined students grasp the underlying relationships between path analysis, factor analysis, and structural equation modeling more easily. A few sections of the book make use of elementary matrix algebra. An appendix on the topic is provided for those who need a review. The author maintains an informal style so as to increase the book's accessibility. Notes at the end of each chapter provide some of the more technical details. The book is not tied to a particular computer program, but special attention is paid to LISREL, EQS, AMOS, and Mx. New in the fourth edition of Latent Variable Models: *a data CD that features the correlation and covariance matrices used in the exercises; *new sections on missing data, non-normality, mediation, factorial invariance, and automating the construction of path diagrams; and *reorganization of chapters 3-7 to enhance the flow of the book and its flexibility for teaching. Intended for advanced students and researchers in the areas of social, educational, clinical, industrial, consumer, personality, and developmental psychology, sociology, political science, and marketing, some prior familiarity with correlation and regression is helpful.


Basics of Structural Equation Modeling

Basics of Structural Equation Modeling

Author: Geoffrey M. Maruyama

Publisher: SAGE Publications

Published: 1997-09-22

Total Pages: 328

ISBN-13: 150632035X

DOWNLOAD EBOOK

With the availability of software programs such as LISREL, EQS, and AMOS modeling techniques have become a popular tool for formalized presentation of the hypothesized relationships underlying correlational research and for testing the plausibility of hypothesizing for a particular data set. The popularity of these techniques, however, has often led to misunderstandings of them, particularly by students being exposed to them for the first time. Through the use of careful narrative explanation, Basics of Structural Equation Modeling describes the logic underlying structural equation modeling (SEM) approaches, describes how SEM approaches relate to techniques like regression and factor analysis, analyzes the strengths and shortcomings of SEM as compared to alternative methodologies, and explores the various methodologies for analyzing structural equation data.


Testing Structural Equation Models

Testing Structural Equation Models

Author: Kenneth A. Bollen

Publisher: SAGE

Published: 1993-02

Total Pages: 336

ISBN-13: 9780803945074

DOWNLOAD EBOOK

What is the role of fit measures when respecifying a model? Should the means of the sampling distributions of a fit index be unrelated to the size of the sample? Is it better to estimate the statistical power of the chi-square test than to turn to fit indices? Exploring these and related questions, well-known scholars examine the methods of testing structural equation models (SEMS) with and without measurement error, as estimated by such programs as EQS, LISREL and CALIS.


Structural Equation Modeling

Structural Equation Modeling

Author: Jichuan Wang

Publisher: John Wiley & Sons

Published: 2019-09-17

Total Pages: 662

ISBN-13: 1119422728

DOWNLOAD EBOOK

Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.


Structural Equation Modeling

Structural Equation Modeling

Author: Bruce H. Pugesek

Publisher: Cambridge University Press

Published: 2003-01-23

Total Pages: 427

ISBN-13: 1139435396

DOWNLOAD EBOOK

Structural equation modelling (SEM) is a technique that is used to estimate, analyse and test models that specify relationships among variables. The ability to conduct such analyses is essential for many problems in ecology and evolutionary biology. This book begins by explaining the theory behind the statistical methodology, including chapters on conceptual issues, the implementation of an SEM study and the history of the development of SEM. The second section provides examples of analyses on biological data including multi-group models, means models, P-technique and time-series. The final section of the book deals with computer applications and contrasts three popular SEM software packages. Aimed specifically at biological researchers and graduate students, this book will serve as valuable resource for both learning and teaching the SEM methodology. Moreover, data sets and programs that are presented in the book can also be downloaded from a website to assist the learning process.


Structural Equation Modeling

Structural Equation Modeling

Author: David Kaplan

Publisher: SAGE Publications

Published: 2008-07-23

Total Pages: 306

ISBN-13: 148334259X

DOWNLOAD EBOOK

Using detailed, empirical examples, Structural Equation Modeling, Second Edition, presents a thorough and sophisticated treatment of the foundations of structural equation modeling (SEM). It also demonstrates how SEM can provide a unique lens on the problems social and behavioral scientists face. Intended Audience While the book assumes some knowledge and background in statistics, it guides readers through the foundations and critical assumptions of SEM in an easy-to-understand manner.


Introducing LISREL

Introducing LISREL

Author: Adamantios Diamantopoulos

Publisher: SAGE

Published: 2000-09-22

Total Pages: 196

ISBN-13: 9780761951711

DOWNLOAD EBOOK

`If you encounter a research student for whom the very word LISREL induces feelings of fear, quietly recommend that they read this book. They will thank you for it. With increasingly user-friendly versions of LISREL being released and guide books such as this published, LISREL really should be accessible to all' - European Journal of MarketingEmphasizing substantive issues rather than intricate statistical details, this book provides a comprehensive introduction to LISREL for structural equation modeling (SEM) using a non-technical, user-oriented approach that. The emphasis is on:- exposing the reader to the major steps associated with the formulation and testing of a model under the LISREL framework- describing the key decisions associated with each step- highlighting potential problems and limitations associated with LISREL modeling- assisting the interpretation of LISREL input and output files.The overall aim is to provide a critical understanding of what is really involved in LISREL modeling and sensitize the reader against `mechanically' fitting or modifying models.The entire range of decisions associated with the practical application of the LISREL program is covered in a user-friendly fashion. Concrete examples are used throughout to illustrate issues relating to model conceptualization, specification, identification, estimation, evaluation, modification, and cross-validation and illustrated with actual program output.The program is made much more accessible by adopting the more user-friendly SIMPLIS command language for preparing input files. Although primarily aimed at beginning users, readers are directed to further reading together with a comprehensive bibliography for the more advanced user.