This volume delves into a spectrum of theoretical as well as applied aspects of high-resolution stratigraphic approaches in paleontology. It explores how increasingly detailed knowledge of the fossil record can enhance our understanding of the evolution of life on Earth and also allows geoscientists to address a broad range of important evolutionary and environmental questions in this arena. A 'zipped' version of the program CONOP9 2007 along with read-me files, sample files, and other documentation are available via a web site (see below). An earlier version of CONOP9 was initially supplied with 'High-Resolution Approaches in Stratigraphic Paleontology' (PJ Harries, editor) and described in Chapter 13 of that volume. This is an updated version of the program, and the documentation supplied with this version supersedes the information supplied in that chapter. To view the CONOP9 Programs, click on the link CONOP9 Programs on the right side of this page under Related links.
Application of new geochemical dating techniques, geophysics, and geologic mapping results to the classic problem of the nature and geologic setting of these well-known complexes in order to clarify time of Tertiary volcanism and relationship to regional tectonics.
"This volume is the product of nearly 25 years of geologic investigations. It is an exposition of two small areas, both less than 25 km from the front of the Mississippian Roberts Mountains thrust, but each displaying a different, unique geologic terrane, previously undocumented in Nevada and perhaps in North America"--
This volume summarises our present understanding of the formation of passive continental margins and their ocean-continent transitions. It outlines the geological, geophysical and petrological observations that characterize extensional systems, and how such observations can guide and constrain dynamic and kinematic models of continental lithosphere extension, breakup and the inception of organized sea-floor spreading.
Traditionally, investigations of the rheology and deformation of the lithosphere (the rigid or mechanically strong outer layer of the Earth, which contains the crust and the uppermost part of the mantle) have taken place at one scale in the laboratory and at an entirely different scale in the field. Laboratory experiments are generally restricted to centimeter-sized samples and day- or year-length times, while geological processes occur over tens to hundreds of kilometers and millions of years. The application of laboratory results to geological systems necessitates extensive extrapolation in both temporal and spatial scales, as well as a detailed understanding of the dominant physical mechanisms. The development of an understanding of large-scale processes requires an integrated approach. This book explores the current cutting-edge interdisciplinary research in lithospheric rheology and provides a broad summary of the rheology and deformation of the continental lithosphere in both extensional and compressional settings. Individual chapters explore contemporary research resulting from laboratory, observational, and theoretical experiments.