Strong Light-matter Coupling

Strong Light-matter Coupling

Author: Leong Chuan Kwek

Publisher: World Scientific

Published: 2013-12-23

Total Pages: 303

ISBN-13: 9814460354

DOWNLOAD EBOOK

The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptual, theoretical and experimental basis on strong light-matter coupling, both in the classical and in the quantum regimes. In addition, the emphasis is on new forefront research topics currently developed around the physics of strong light-matter interaction in the atomic and solid-state scenarios.


Strong Light-matter Coupling: From Atoms To Solid-state Systems

Strong Light-matter Coupling: From Atoms To Solid-state Systems

Author: Leong-chuan Kwek

Publisher: World Scientific

Published: 2013-12-23

Total Pages: 303

ISBN-13: 9814460362

DOWNLOAD EBOOK

The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes.This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptual, theoretical and experimental basis on strong light-matter coupling, both in the classical and in the quantum regimes. In addition, the emphasis is on new forefront research topics currently developed around the physics of strong light-matter interaction in the atomic and solid-state scenarios.


Polaritonic Chemistry

Polaritonic Chemistry

Author: Javier Galego Pascual​

Publisher: Springer Nature

Published: 2020-06-25

Total Pages: 179

ISBN-13: 3030486982

DOWNLOAD EBOOK

Polaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system.


Polariton Chemistry

Polariton Chemistry

Author: Joel Yuen-Zhou

Publisher:

Published: 2023-05-09

Total Pages: 452

ISBN-13: 9781119783299

DOWNLOAD EBOOK

This book provides a pedagogical introduction to the emerging field of Polariton Chemistry, where optical cavities are utilized to control the physicochemical properties and dynamics of molecular systems. Given the early stages of this interdisciplinary research area, it is important to provide a common language and starting point for interested researchers across Chemistry, Physics, and Engineering This edited compendium fills a void given that there is currently no analogue in the current literature. Topics covered include Single-Molecule Strong Light-Matter Coupling; Collective Strong Light-Matter Coupling; and Ultrastrong Light-Matter Coupling


Cavity Polaritons

Cavity Polaritons

Author: Alexey Kavokin

Publisher: Elsevier

Published: 2003-11-26

Total Pages: 248

ISBN-13: 008048137X

DOWNLOAD EBOOK

Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well. · The book is oriented to a general reader and is easy to read for a non-specialist.· Contains an overview of the most essential effects in physics of microcavities experimentally observed and theoretically predicted during the recent decade such as:. · Bose-Einstein condensation at room temperature.· Lasers without inversion of population.· Microcavity boom: optics of the XXI century!· Frequently asked questions on microcavities and responses without formulas. · Half-light-half-matter quasi-particles: base for the future optoelectronic devices


Light-Matter Interaction

Light-Matter Interaction

Author: John Weiner

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 256

ISBN-13: 3527617892

DOWNLOAD EBOOK

A thorough introduction to atomic, molecular, and optical (AMO) science and engineering Atomic, molecular, and optical (AMO) science and engineering stands at the confluence of strong scientific and technological currents in physics, chemistry, and electrical engineering. It seeks ways to expand our ability to use light for many purposes: to observe and manipulate matter at the atomic scale, to use nanostructures to manipulate light at the subwavelength scale, to develop quantum devices, and to control internal molecular motion and modify chemical reactivity with light. The two-volume Light-Matter Interaction draws together the principal ideas that form the basis of AMO science and engineering. Volume 1: Fundamentals and Applications fills many gaps left by standard courses and texts in chemical physics and electrical engineering to supply the basis of what the AMO scientist or engineer needs to build a solid foundation of understanding in the field. Organized to serve as both textbook and reliable desk reference to a diverse audience ranging from student and novice to advanced practitioner, this book discusses both the fundamentals and common applications, including: * Classical absorption and emission of radiation * Quantum dipole coupling to the two-level system * The optical Bloch equations * Quantized fields and dressed states * Optical forces and cooling from atom-light interaction * The laser in theory and practice * Geometrical and wave optics: theory and applications * The Gaussian beam and optical resonators


QED

QED

Author: Richard P. Feynman

Publisher: Princeton University Press

Published: 2014-10-26

Total Pages: 193

ISBN-13: 140084746X

DOWNLOAD EBOOK

Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.


Semiconductor Optics 1

Semiconductor Optics 1

Author: Heinz Kalt

Publisher: Springer Nature

Published: 2019-09-20

Total Pages: 559

ISBN-13: 3030241521

DOWNLOAD EBOOK

This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.


Quantum Plasmonics

Quantum Plasmonics

Author: Sergey I. Bozhevolnyi

Publisher: Springer

Published: 2016-11-26

Total Pages: 338

ISBN-13: 3319458205

DOWNLOAD EBOOK

This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.


Microcavities

Microcavities

Author: Alexey Kavokin

Publisher: OUP Oxford

Published: 2011-04-27

Total Pages: 487

ISBN-13: 0191620734

DOWNLOAD EBOOK

Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.