This volume addresses the tectonic complexity and diversity of strike-slip restraining and releasing bends with 18 contributions divided into four thematic sections: a topical review of fault bends and their global distribution; bends, sedimentary basins and earthquake hazards; restraining bends, transpressional deformation and basement controls on development; releasing bends, transtensional deformation and fluid flow.
Published by the American Geophysical Union as part of the Maurice Ewing Series, Volume 4. From May 12 to May 16, 1980, eighty-eight scientists from eleven countries attended a Symposium on Earthquake Prediction at Mohonk Mountain House, Mohonk, New York. This was the third in a biennial series honoring Maurice Ewing, first director of Lamont-Doherty Geological Observatory. The Symposium was one of several events that were held in 1980 to celebrate the 100th anniversary of the Graduate School of Arts and Sciences at Columbia University. The two earlier Ewing Symposia, on island arcs and deep sea drilling, reflected Ewing's lifelong interest in the structure and evolution of the ocean floor. In the Third Ewing Symposium we touch another area—earthquake seismology—that played an important part in Ewing's career. Work on surface waves and long-period seismology under Ewing's direction during the 1950's and 1960's, along with his exploration of the earth beneath the oceans, provided much of the framework on which current ideas on earthquake generation and plate tectonics are based.
Considerable progress has been made recently in quantifying geometrical and physical properties of fault surfaces and adjacent fractured and granulated damage zones in active faulting environments. There has also been significant progress in developing rheologies and computational frameworks that can model the dynamics of fault zone processes. This volume provides state-of-the-art theoretical and observational results on the mechanics, structure and evolution of fault zones. Subjects discussed include damage rheologies, development of instabilities, fracture and friction, dynamic rupture experiments, and analyses of earthquake and fault zone data.
The volume is organized into three sections entitled Overview, Extensional Settings and Contractional Settings together with a glossary of terms having to do with strike-slip deformation, basin formation and sedimentation.
Earthquakes and Coseismic Surface Faulting on the Iranian Plateau is a comprehensive and well-illustrated multi-disciplinary research work that analyzes the human and physical aspects of the active faults and large-magnitude earthquakes since ancient times on the Iranian Plateau. The long-term historical, archaeological, and sociological record of earthquakes discussed here gives insight into earthquake magnitudes, recurrences, fault segmentation, clustering, and patterns of coseismic ruptures from prehistoric times to the present. The first part of the book examines oral traditions and literature of the region concerned with earthquakes, particularly in folklore, epic literature, and theology. The second part assesses dynamic phenomena associated with earthquakes, including active tectonics, archaeoseismicity, and coseismic surface faulting throughout the twentieth century. This work is a valuable technical survey and an essential reference for understanding seismic hazard analysis and earthquake risk minimization in earthquake-prone developing and developed countries throughout the world. - Provides a reference for seismic hazard evaluation and analysis - Covers data dealing with crustal deformations caused by earthquake faulting and folding since historic times - Presents unique and complete data for use in empirical relation analyses in all regions
Neotectonics involves the study of the motions and deformations of the Earth's crust that are current or recent in geologic time. The Mediterranean region is one of the most important regions for neotectonics and related natural hazards. This volume focuses on the neotectonics of the Eastern Mediterranean region, which has experienced many major extensive earthquakes, including the devastating Izmit, Turkey earthquake on August 17, 1999. The event lasted for 37 seconds, killing around 17,000 people, injuring 44,000 people, and leaving approximately half a million people homeless. Since then, several North American, European, and Turkish research groups have studied the neotectonics and earthquake potential of the region using different geological and geophysical methods, including GPS studies, geodesy, and passive source seismology. Some results from their studies were presented in major North American and European geological meetings. This volume highlights the work involving the Eastern Mediterranean region, which has one of the world's longest and best studied active strike-slip (horizontal motion) faults: the east-west trending North Anatolian fault zone, which is very similar to the San Andreas fault in California. This volume features discussions of: Widespread applications in measuring plate motion that have strong implications in predicting natural disasters like earthquakes, both on a regional and a global scale Recent motions, particularly those produced by earthquakes, that provide insights on the physics of earthquake recurrence, the growth of mountains, orogenic movements, and seismic hazards Unique methodical approaches in collecting tectonophysical data, including field, seismic, experimental, computer-based, and theoretical approaches. Active Global Seismology is a valuable resource for geoscientists, particularly in the field of tectonophysics, geophysics, geodynamics, seismology, structural geology, environmental geology, and geoengineering. Read an interview with the editors to find out more: https://eos.org/editors-vox/neotectonics-and-earthquake-forecasting
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.