Streaming Architecture

Streaming Architecture

Author: Ted Dunning

Publisher: "O'Reilly Media, Inc."

Published: 2016-05-10

Total Pages: 119

ISBN-13: 149195390X

DOWNLOAD EBOOK

More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.


Streaming Architecture

Streaming Architecture

Author: Ted Dunning

Publisher: "O'Reilly Media, Inc."

Published: 2016-05-10

Total Pages: 116

ISBN-13: 1491953888

DOWNLOAD EBOOK

More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.


Stream Processor Architecture

Stream Processor Architecture

Author: Scott Rixner

Publisher: Springer Science & Business Media

Published: 2001-10-31

Total Pages: 144

ISBN-13: 9780792375456

DOWNLOAD EBOOK

Media processing applications, such as three-dimensional graphics, video compression, and image processing, currently demand 10-100 billion operations per second of sustained computation. Fortunately, hundreds of arithmetic units can easily fit on a modestly sized 1cm2 chip in modern VLSI. The challenge is to provide these arithmetic units with enough data to enable them to meet the computation demands of media processing applications. Conventional storage hierarchies, which frequently include caches, are unable to bridge the data bandwidth gap between modern DRAM and tens to hundreds of arithmetic units. A data bandwidth hierarchy, however, can bridge this gap by scaling the provided bandwidth across the levels of the storage hierarchy. The stream programming model enables media processing applications to exploit a data bandwidth hierarchy effectively. Media processing applications can naturally be expressed as a sequence of computation kernels that operate on data streams. This programming model exposes the locality and concurrency inherent in these applications and enables them to be mapped efficiently to the data bandwidth hierarchy. Stream programs are able to utilize inexperience local data bandwidth when possible and consume expensive global data bandwidth only when necessary. Stream Processor Architecture presents the architecture of the Imagine streaming media processor, which delivers a peak performance of 20 billion floating-point operations per second. Imagine efficiently supports 48 arithmetic units with a three-tiered data bandwidth hierarchy. At the base of the hierarchy, the streaming memory system employs memory access scheduling to maximize the sustained bandwidth of external DRAM. At the center of the hierarchy, the global stream register file enables streams of data to be recirculated directly from one computation kernel to the next without returning data to memory. Finally, local distributed register files that directly feed the arithmetic units enable temporary data to be stored locally so that it does not need to consume costly global register bandwidth. The bandwidth hierarchy enables Imagine to achieve up to 96% of the performance of a stream processor with infinite bandwidth from memory and the global register file.


Streaming Data

Streaming Data

Author: Andrew Psaltis

Publisher: Simon and Schuster

Published: 2017-05-31

Total Pages: 314

ISBN-13: 1638357242

DOWNLOAD EBOOK

Summary Streaming Data introduces the concepts and requirements of streaming and real-time data systems. The book is an idea-rich tutorial that teaches you to think about how to efficiently interact with fast-flowing data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology As humans, we're constantly filtering and deciphering the information streaming toward us. In the same way, streaming data applications can accomplish amazing tasks like reading live location data to recommend nearby services, tracking faults with machinery in real time, and sending digital receipts before your customers leave the shop. Recent advances in streaming data technology and techniques make it possible for any developer to build these applications if they have the right mindset. This book will let you join them. About the Book Streaming Data is an idea-rich tutorial that teaches you to think about efficiently interacting with fast-flowing data. Through relevant examples and illustrated use cases, you'll explore designs for applications that read, analyze, share, and store streaming data. Along the way, you'll discover the roles of key technologies like Spark, Storm, Kafka, Flink, RabbitMQ, and more. This book offers the perfect balance between big-picture thinking and implementation details. What's Inside The right way to collect real-time data Architecting a streaming pipeline Analyzing the data Which technologies to use and when About the Reader Written for developers familiar with relational database concepts. No experience with streaming or real-time applications required. About the Author Andrew Psaltis is a software engineer focused on massively scalable real-time analytics. Table of Contents PART 1 - A NEW HOLISTIC APPROACH Introducing streaming data Getting data from clients: data ingestion Transporting the data from collection tier: decoupling the data pipeline Analyzing streaming data Algorithms for data analysis Storing the analyzed or collected data Making the data available Consumer device capabilities and limitations accessing the data PART 2 - TAKING IT REAL WORLD Analyzing Meetup RSVPs in real time


Introduction to Apache Flink

Introduction to Apache Flink

Author: Ellen Friedman

Publisher: "O'Reilly Media, Inc."

Published: 2016-10-19

Total Pages: 109

ISBN-13: 1491977167

DOWNLOAD EBOOK

There’s growing interest in learning how to analyze streaming data in large-scale systems such as web traffic, financial transactions, machine logs, industrial sensors, and many others. But analyzing data streams at scale has been difficult to do well—until now. This practical book delivers a deep introduction to Apache Flink, a highly innovative open source stream processor with a surprising range of capabilities. Authors Ellen Friedman and Kostas Tzoumas show technical and nontechnical readers alike how Flink is engineered to overcome significant tradeoffs that have limited the effectiveness of other approaches to stream processing. You’ll also learn how Flink has the ability to handle both stream and batch data processing with one technology. Learn the consequences of not doing streaming well—in retail and marketing, IoT, telecom, and banking and finance Explore how to design data architecture to gain the best advantage from stream processing Get an overview of Flink’s capabilities and features, along with examples of how companies use Flink, including in production Take a technical dive into Flink, and learn how it handles time and stateful computation Examine how Flink processes both streaming (unbounded) and batch (bounded) data without sacrificing performance


Flow Architectures

Flow Architectures

Author: James Urquhart

Publisher: "O'Reilly Media, Inc."

Published: 2021-01-06

Total Pages: 280

ISBN-13: 1492075841

DOWNLOAD EBOOK

Software development today is embracing events and streaming data, which optimizes not only how technology interacts but also how businesses integrate with one another to meet customer needs. This phenomenon, called flow, consists of patterns and standards that determine which activity and related data is communicated between parties over the internet. This book explores critical implications of that evolution: What happens when events and data streams help you discover new activity sources to enhance existing businesses or drive new markets? What technologies and architectural patterns can position your company for opportunities enabled by flow? James Urquhart, global field CTO at VMware, guides enterprise architects, software developers, and product managers through the process. Learn the benefits of flow dynamics when businesses, governments, and other institutions integrate via events and data streams Understand the value chain for flow integration through Wardley mapping visualization and promise theory modeling Walk through basic concepts behind today's event-driven systems marketplace Learn how today's integration patterns will influence the real-time events flow in the future Explore why companies should architect and build software today to take advantage of flow in coming years


Scalable Big Data Architecture

Scalable Big Data Architecture

Author: Bahaaldine Azarmi

Publisher: Apress

Published: 2015-12-31

Total Pages: 147

ISBN-13: 1484213262

DOWNLOAD EBOOK

This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.


Scalable Continuous Media Streaming Systems

Scalable Continuous Media Streaming Systems

Author: Jack Lee

Publisher: John Wiley & Sons

Published: 2005-06-17

Total Pages: 408

ISBN-13:

DOWNLOAD EBOOK

Continuous media streaming systems will shape the future of information infrastructure. The challenge is to design systems and networks capable of supporting millions of concurrent users. Key to this is the integration of fault-tolerant mechanisms to prevent individual component failures from disrupting systems operations. These are just some of the hurdles that need to be overcome before large-scale continuous media services such as video-on-demand can be deployed with maximum efficiency. The author places the subject in context, drawing together findings from the past decade of research whilst examining the technology’s present status and its future potential. The approach adopted is comprehensive, covering topics – notably the scalability and fault-tolerance issues - that previously have not been treated in depth. Provides an accessible introduction to the technology, presenting the basic principles for media streaming system design, focusing on the need for the correct and timely delivery of data. Explores the use of parallel server architectures to tackle the two key challenges of scalability and fault-tolerance. Investigates the use of network multicast streaming algorithms to further increase the scalability of very-large-scale media streaming systems. Illustrates all findings using real-world examples and case studies gleaned from cutting-edge worldwide research. Combining theory and practice, this book will appeal to industry specialists working in content distribution in general and continuous media streaming in particular. The introductory materials and basic building blocks complemented by amply illustrated, more advanced coverage provide essential reading for senior undergraduates, postgraduates and researchers in these fields.


Building Data Streaming Applications with Apache Kafka

Building Data Streaming Applications with Apache Kafka

Author: Manish Kumar

Publisher: Packt Publishing Ltd

Published: 2017-08-18

Total Pages: 269

ISBN-13: 1787287637

DOWNLOAD EBOOK

Design and administer fast, reliable enterprise messaging systems with Apache Kafka About This Book Build efficient real-time streaming applications in Apache Kafka to process data streams of data Master the core Kafka APIs to set up Apache Kafka clusters and start writing message producers and consumers A comprehensive guide to help you get a solid grasp of the Apache Kafka concepts in Apache Kafka with pracitcalpractical examples Who This Book Is For If you want to learn how to use Apache Kafka and the different tools in the Kafka ecosystem in the easiest possible manner, this book is for you. Some programming experience with Java is required to get the most out of this book What You Will Learn Learn the basics of Apache Kafka from scratch Use the basic building blocks of a streaming application Design effective streaming applications with Kafka using Spark, Storm &, and Heron Understand the importance of a low -latency , high- throughput, and fault-tolerant messaging system Make effective capacity planning while deploying your Kafka Application Understand and implement the best security practices In Detail Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or an enterprise messaging system. It lets you publish and subscribe to a stream of records, and process them in a fault-tolerant way as they occur. This book is a comprehensive guide to designing and architecting enterprise-grade streaming applications using Apache Kafka and other big data tools. It includes best practices for building such applications, and tackles some common challenges such as how to use Kafka efficiently and handle high data volumes with ease. This book first takes you through understanding the type messaging system and then provides a thorough introduction to Apache Kafka and its internal details. The second part of the book takes you through designing streaming application using various frameworks and tools such as Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you through more advanced concepts in Apache Kafka such as capacity planning and security. By the end of this book, you will have all the information you need to be comfortable with using Apache Kafka, and to design efficient streaming data applications with it. Style and approach A step-by –step, comprehensive guide filled with practical and real- world examples


Stream Processing with Apache Flink

Stream Processing with Apache Flink

Author: Fabian Hueske

Publisher: O'Reilly Media

Published: 2019-04-11

Total Pages: 311

ISBN-13: 1491974265

DOWNLOAD EBOOK

Get started with Apache Flink, the open source framework that powers some of the world’s largest stream processing applications. With this practical book, you’ll explore the fundamental concepts of parallel stream processing and discover how this technology differs from traditional batch data processing. Longtime Apache Flink committers Fabian Hueske and Vasia Kalavri show you how to implement scalable streaming applications with Flink’s DataStream API and continuously run and maintain these applications in operational environments. Stream processing is ideal for many use cases, including low-latency ETL, streaming analytics, and real-time dashboards as well as fraud detection, anomaly detection, and alerting. You can process continuous data of any kind, including user interactions, financial transactions, and IoT data, as soon as you generate them. Learn concepts and challenges of distributed stateful stream processing Explore Flink’s system architecture, including its event-time processing mode and fault-tolerance model Understand the fundamentals and building blocks of the DataStream API, including its time-based and statefuloperators Read data from and write data to external systems with exactly-once consistency Deploy and configure Flink clusters Operate continuously running streaming applications