Games are seen only for recreation. However, this book shows that games can be used to strengthen problem-solving skills and beyond. This book presents strategy games and discusses for each one solutions towards a winning position in the game. In most cases, these strategies are analogous to problem-solving strategies in mathematics. Readers are also exposed to a wide variety of games from several different cultures, which will broaden the perspective of the readers.
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
"This book may be used by an instructor to energize his or her classroom with fun and challenging problems. The games do not require any special equipment. Most can be played with paper, pencil and a copy of the game board. It is a good collection of different types of strategy games. By design, each game fosters mathematical growth. Many of the games originate from various countries around the world. This will allow the reader to experience a bit of cultural growth." MAA Reviews "This is a nice collection of board games, and when pupils will play such games, they will develop some winning strategies for these games, and these skills will probably help in cultivating certain attitudes and perhaps working schemes to tackle mathematical problems." European Mathematical Society "This is a nice collection of board games, and when pupils will play such games, they will develop some winning strategies for these games, and these skills will probably help in cultivating certain attitudes and perhaps working schemes to tackle mathematical problems." European Mathematical Society Games are seen only for recreation. However, this book shows that games can be used to strengthen problem-solving skills and beyond. This book presents strategy games and discusses for each one solutions towards a winning position in the game. In most cases, these strategies are analogous to problem-solving strategies in mathematics. Readers are also exposed to a wide variety of games from several different cultures, which will broaden the perspective of the readers.
An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. In her book, she offers you the tools needed to get a better grasp of that intimidating but inescapable field.
This book is addressed to people with research interests in the nature of mathematical thinking at any level, topeople with an interest in "higher-order thinking skills" in any domain, and to all mathematics teachers. The focal point of the book is a framework for the analysis of complex problem-solving behavior. That framework is presented in Part One, which consists of Chapters 1 through 5. It describes four qualitatively different aspects of complex intellectual activity: cognitive resources, the body of facts and procedures at one's disposal; heuristics, "rules of thumb" for making progress in difficult situations; control, having to do with the efficiency with which individuals utilize the knowledge at their disposal; and belief systems, one's perspectives regarding the nature of a discipline and how one goes about working in it. Part Two of the book, consisting of Chapters 6 through 10, presents a series of empirical studies that flesh out the analytical framework. These studies document the ways that competent problem solvers make the most of the knowledge at their disposal. They include observations of students, indicating some typical roadblocks to success. Data taken from students before and after a series of intensive problem-solving courses document the kinds of learning that can result from carefully designed instruction. Finally, observations made in typical high school classrooms serve to indicate some of the sources of students' (often counterproductive) mathematical behavior.
This book will present a collection of mathematical problems — lighthearted in nature — intended to entertain the general readership. Problems will be selected largely for the unusual and unexpected solutions to which they lend themselves. Some interesting contents included: All in all, the book is meant to entertain the general readership and to convince them about the power and beauty of mathematics.
The art or skill of problem solving in mathematics is mostly relegated to the strategies one can use to solve problems in the field. Although this book addresses that issue, it delves deeply into the psychological aspects that affect successful problem-solving. Such topics as decision-making, judgment, and reasoning as well as using memory effectively and a discussion of the thought processes that could help address certain problem-solving situations.Most books that address problem-solving and mathematics focus on the various skills. This book goes beyond that and investigates the psychological aspects to solving problems in mathematics.
'The reference list is excellent. This is a worthwhile (though 'niche') book that will be attractive to a particular sector of the general reading public interested in mathematical riddles and puzzles. Professional educators might well employ it in integrated learning settings. Summing Up: Recommended. All readers.'CHOICEImmerse yourself in the fascinating world of geometry and spatial ability — either individually or in small groups, either as challenges or play problems! Here are four reasons why you should work with this book:This book offers a very unique opportunity to enhance your spatial ability, your mathematical competence, and your logical thinking. The authors arranged 45 problems — including more than 120 tasks — in a well-balanced order, which have been tested with a variety of populations.