Strategies in Biomedical Data Science

Strategies in Biomedical Data Science

Author: Jay A. Etchings

Publisher: John Wiley & Sons

Published: 2017-01-03

Total Pages: 466

ISBN-13: 1119256186

DOWNLOAD EBOOK

An essential guide to healthcare data problems, sources, and solutions Strategies in Biomedical Data Science provides medical professionals with much-needed guidance toward managing the increasing deluge of healthcare data. Beginning with a look at our current top-down methodologies, this book demonstrates the ways in which both technological development and more effective use of current resources can better serve both patient and payer. The discussion explores the aggregation of disparate data sources, current analytics and toolsets, the growing necessity of smart bioinformatics, and more as data science and biomedical science grow increasingly intertwined. You'll dig into the unknown challenges that come along with every advance, and explore the ways in which healthcare data management and technology will inform medicine, politics, and research in the not-so-distant future. Real-world use cases and clear examples are featured throughout, and coverage of data sources, problems, and potential mitigations provides necessary insight for forward-looking healthcare professionals. Big Data has been a topic of discussion for some time, with much attention focused on problems and management issues surrounding truly staggering amounts of data. This book offers a lifeline through the tsunami of healthcare data, to help the medical community turn their data management problem into a solution. Consider the data challenges personalized medicine entails Explore the available advanced analytic resources and tools Learn how bioinformatics as a service is quickly becoming reality Examine the future of IOT and the deluge of personal device data The sheer amount of healthcare data being generated will only increase as both biomedical research and clinical practice trend toward individualized, patient-specific care. Strategies in Biomedical Data Science provides expert insight into the kind of robust data management that is becoming increasingly critical as healthcare evolves.


Introduction to Biomedical Data Science

Introduction to Biomedical Data Science

Author: Robert Hoyt

Publisher: Lulu.com

Published: 2019-11-25

Total Pages: 260

ISBN-13: 179476173X

DOWNLOAD EBOOK

Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.


Planning for Long-Term Use of Biomedical Data

Planning for Long-Term Use of Biomedical Data

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-07-09

Total Pages: 93

ISBN-13: 0309672759

DOWNLOAD EBOOK

Biomedical research data sets are becoming larger and more complex, and computing capabilities are expanding to enable transformative scientific results. The National Institutes of Health's (NIH's) National Library of Medicine (NLM) has the unique role of ensuring that biomedical research data are findable, accessible, interoperable, and reusable in an ethical manner. Tools that forecast the costs of long-term data preservation could be useful as the cost to curate and manage these data in meaningful ways continues to increase, as could stewardship to assess and maintain data that have future value. The National Academies of Sciences, Engineering, and Medicine convened a workshop on July 11-12, 2019 to gather insight and information in order to develop and demonstrate a framework for forecasting long-term costs for preserving, archiving, and accessing biomedical data. Presenters and attendees discussed tools and practices that NLM could use to help researchers and funders better integrate risk management practices and considerations into data preservation, archiving, and accessing decisions; methods to encourage NIH-funded researchers to consider, update, and track lifetime data; and burdens on the academic researchers and industry staff to implement these tools, methods, and practices. This publication summarizes the presentations and discussion of the workshop.


Life-Cycle Decisions for Biomedical Data

Life-Cycle Decisions for Biomedical Data

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-10-04

Total Pages: 185

ISBN-13: 0309670039

DOWNLOAD EBOOK

Biomedical research results in the collection and storage of increasingly large and complex data sets. Preserving those data so that they are discoverable, accessible, and interpretable accelerates scientific discovery and improves health outcomes, but requires that researchers, data curators, and data archivists consider the long-term disposition of data and the costs of preserving, archiving, and promoting access to them. Life Cycle Decisions for Biomedical Data examines and assesses approaches and considerations for forecasting costs for preserving, archiving, and promoting access to biomedical research data. This report provides a comprehensive conceptual framework for cost-effective decision making that encourages data accessibility and reuse for researchers, data managers, data archivists, data scientists, and institutions that support platforms that enable biomedical research data preservation, discoverability, and use.


Data Analysis for the Life Sciences with R

Data Analysis for the Life Sciences with R

Author: Rafael A. Irizarry

Publisher: CRC Press

Published: 2016-10-04

Total Pages: 537

ISBN-13: 1498775861

DOWNLOAD EBOOK

This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.


Large-Scale Biomedical Science

Large-Scale Biomedical Science

Author: National Research Council

Publisher: National Academies Press

Published: 2003-07-19

Total Pages: 297

ISBN-13: 0309089123

DOWNLOAD EBOOK

The nature of biomedical research has been evolving in recent years. Technological advances that make it easier to study the vast complexity of biological systems have led to the initiation of projects with a larger scale and scope. In many cases, these large-scale analyses may be the most efficient and effective way to extract functional information from complex biological systems. Large-Scale Biomedical Science: Exploring Strategies for Research looks at the role of these new large-scale projects in the biomedical sciences. Though written by the National Academies' Cancer Policy Board, this book addresses implications of large-scale science extending far beyond cancer research. It also identifies obstacles to the implementation of these projects, and makes recommendations to improve the process. The ultimate goal of biomedical research is to advance knowledge and provide useful innovations to society. Determining the best and most efficient method for accomplishing that goal, however, is a continuing and evolving challenge. The recommendations presented in Large-Scale Biomedical Science are intended to facilitate a more open, inclusive, and accountable approach to large-scale biomedical research, which in turn will maximize progress in understanding and controlling human disease.


Methods in Biomedical Informatics

Methods in Biomedical Informatics

Author: Indra Neil Sarkar

Publisher: Academic Press

Published: 2013-09-03

Total Pages: 589

ISBN-13: 0124016847

DOWNLOAD EBOOK

Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. - Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications - Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. - Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.


Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare

Author: Kun Chang Lee

Publisher: Academic Press

Published: 2020-10-18

Total Pages: 298

ISBN-13: 0128193158

DOWNLOAD EBOOK

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. Examines the development and application of data analytics applications in biomedical data Presents innovative classification and regression models for predicting various diseases Discusses genome structure prediction using predictive modeling Shows readers how to develop clinical decision support systems Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks