The strategic planning of urban water systems is a complex task. The Urban Water programme covered projects from various disciplines at 9 Swedish Universities, from 1999 to 2006. The projects developed a "toolbox" for strategic planning of drinking-, waste- and stormwater management, covering aspects such as the environment, health and hygiene, financing, organisation, households, and technical function. Strategic Planning of Sustainable Urban Water Management synthesises the results and presents a comprehensive approach, which includes not only the technical, economic and environmental aspects, but also the challenges of institutional capacity and public participation in the planning process. Furthermore, the experience from a number of case studies are summarised and can offer readers inspiration for their own planning situations.
This book features expert contributions on key sustainability aspects of urban water management in Chinese agglomerations. Both technical and institutional pathways to sustainable urban water management are developed on the basis of a broad, interdisciplinary problem analysis.
Today’s urban water managers are faced with an unprecedented set of issues that call for a different approach to urban water management. These include the urgent changes needed to respond to climate change, population growth, growing resource constraints, and rapidly increasing global urbanization. Not only are these issues difficult to address, but they are facing us in an environment that is increasingly unpredictable and complex. Although innovative, new tools are now available to water professionals to address these challenges, solving the water problems of tomorrow cannot be done by the water professionals alone. Instead, the city of the future, whether in the developed or developing world, must integrate water management planning and operations with other city services to meet the needs of humans and the environment in a dramatically superior manner. Water Sensitive Cities has been developed from selected papers from 2009 Singapore Water Week “Planning for Sustainable Solutions” and also papers taken from other IWA events. It pulls together material that supports the water professionals’ need for useful and up-to-date material. Authors: Carol Howe, UNESCO-IHE Institute for Water Education, The Netherlands Cynthia Mitchell, University of Technology, Sydney, Australia
Based on the latest developments research, this book delineates a systems approach urban water hydrology, engineering, planning, and management. It covers a range of classic urban water management issues such as the modeling of urban water cycles, urban water supply and distribution systems, demand forecasting, wastewater and storm water collection and treatment.
Coping with increasing water demand of rapidly-growing cities in Sub-Saharan Africa will require new and innovative planning and management solutions. This book presents Integrated Urban Water Management, an innovative and holistic approach for all components of the urban water cycle to better adapt to current and future urban water challenges.
This volume focuses on practical aspects of sustainable water management in urban areas and presents a discussion of key concepts, methodologies, and case studies of innovative and evolving technologies. Topics include: (1) challenges in urban water resiliency; (2) water and energy nexus; (3) integrated urban water management; and (4) water reuse options (black water, gray water, rainwater). This volume serves as a useful reference for students and researchers involved in holistic approaches to water management, and as a valuable guide to experts in governmental agencies as well as planners and engineers concerned with sustainable water management systems in urban environments.
The European DayWater project has developed a prototype of an Adaptive Decision Support System (ADSS) related to urban stormwater pollution source control. The DayWater ADSS greatly facilitates decision-making for stormwater source control, which is currently impeded by the large number of stakeholders involved and by the necessary multidisciplinary knowledge. This book presents the results of this project, providing new insights into both technical and management issues. The main objectives of its technical chapters are pollution source control modelling, risk and impact assessment, and evaluation and comparison of best management practices. It also covers management aspects, such as the analysis of the decision-making processes in stormwater source control, at a European scale, and stormwater management strategies in general. The combination of scientific-technical and socio-managerial knowledge, with the strong cooperation of numerous end-users, reflects the innovative character of this book which includes actual applications of the ADSS prototype in significant case studies. DayWater: an Adaptive Decision Support System for Urban Stormwater Management contains 26 chapters collectively prepared by DayWater scientific partners and end-users associated with this European Research and Development project. It includes: A general presentation of the DayWater Adaptive Decision Support System (ADSS) structure and operation modes A detailed description of the major components of this ADSS prototype The assessment of its components in significant case studies in France, Germany and Sweden The proceedings of the International Conference on Decision Support Systems for Integrated Urban Water Management, held in Paris on 3-4 November 2005. The book presents the ADSS prototype including a combination of freely accessible on-line databases, guidance documents, “road maps” and modelling or multi-criteria analysis tools. As demonstrated in several significant case studies the challenge for stormwater managers is to make the benefits of urban stormwater management visible to society, resulting in active co-operation of a diversity of stakeholders. Only then, will sustainable management succeed. DayWater: an Adaptive Decision Support System for Urban Stormwater Management advances this cause of sustainable urban management through Urban stormwater management, and makes achievable (by means of risk and vulnerability tools which are included) the goal of integrated urban water management (IUWM).
Containing the proceedings of the 9th International Conference on Urban Regeneration and Sustainability this book addresses the multi-disciplinary aspects of urban planning; a result of the increasing size of cities; the amount of resources and services required and the complexity of modern society. Most of earth’s population now lives in cities and the process of urbanisation still continues generating many problems deriving from the drift of the population towards them. These problems can be resolved by cities becoming efficient habitats, saving resources in a way that improves the quality and standard of living. The process however, faces a number of major challenges, related to reducing pollution, improving main transportation and infrastructure systems. New urban solutions are required to optimise the use of space and energy resources leading to improvements in the environment, i.e. reduction in air, water and soil pollution as well as efficient ways to deal with waste generation. These challenges contribute to the development of social and economic imbalances and require the development of new solutions. Large cities are probably the most complex mechanisms to manage. However, despite such complexity they represent a fertile ground for architects, engineers, city planners, social and political scientists, and other professionals able to conceive new ideas and time them according to technological advances and human requirements. The challenge of planning sustainable cities lies in considering their dynamics, the exchange of energy and matter, and the function and maintenance of ordered structures directly or indirectly, supplied and maintained by natural systems. Topics covered include: Urban strategies; Planning, development and management; Urban conservation and regeneration; The community and the city; Eco-town planning; Landscape planning and design; Environmental management; Sustainable energy and the city; Transportation; Quality of life; Waterfront development; Case studies; Architectural issues; Cultural heritage issues; Intelligent environment and emerging technologies; Planning for risk; Disaster and emergency response; Safety and security; Waste management; Infrastructure and society; Urban metabolism.
This new edition of a well-established textbook covers the environmental and engineering aspects of the management of rainwater and wastewater in areas of human development. Urban Drainage deals comprehensively not only with the design of new systems, but also the analysis and upgrading of existing infrastructure. Keeping its balance of principles, practice and research, this new edition has significant new material on modelling, resilience, smart systems, and the global and local context. The two new authors bring further research and practice-based experience. This is an essential text for undergraduate and graduate students, lecturers and researchers in water engineering, environmental engineering, public health engineering, engineering hydrology, and related non-engineering disciplines. It also serves as a dependable reference for drainage engineers in water service providers, local authorities, and for consulting engineers. Extensive examples are used to support and demonstrate the key issues throughout the text.