Storage and Hybridization of Nuclear Energy

Storage and Hybridization of Nuclear Energy

Author: Hitesh Bindra

Publisher: Academic Press

Published: 2018-11-22

Total Pages: 300

ISBN-13: 0128139765

DOWNLOAD EBOOK

Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy Provides insights into the different methodologies and technologies currently available for the storage of energy Includes case studies from well-known experts working on specific integration concepts around the world


Energy Storage

Energy Storage

Author: Manuel Bailera

Publisher: Springer Nature

Published: 2020-05-09

Total Pages: 141

ISBN-13: 3030465276

DOWNLOAD EBOOK

This book presents a detailed analysis of Power-to-Gas, a promising energy storage technology. It discusses the main mechanisms involved, and presents two Power-to-Gas and carbon capture hybridizations. The book begins by providing an introduction to energy storage technologies. It then reviews a number of Power-to-Gas projects now in progress, highlighting the current barriers to commercializing the technology. Moreover, the book presents two novel Power-to-Gas hybridizations, which improve the technology’s applicability in terms of efficiency, utilization of resources and profitability. Given its scope, the book will be of interest to graduate students, researchers and practitioners in the fields of engineering and energy.


Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems

Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems

Author: Klaus Brun

Publisher: Academic Press

Published: 2020-09-24

Total Pages: 636

ISBN-13: 012819894X

DOWNLOAD EBOOK

Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems provides unique and comprehensive guidelines on all non-battery energy storage technologies, including their technical and design details, applications, and how to make decisions and purchase them for commercial use. The book covers all short and long-term electric grid storage technologies that utilize heat or mechanical potential energy to store electricity, including their cycles, application, advantages and disadvantages, such as round-trip-efficiency, duration, cost and siting. Also discussed are hybrid technologies that utilize hydrogen as a storage medium aside from battery technology. Readers will gain substantial knowledge on all major mechanical, thermal and hybrid energy storage technologies, their market, operational challenges, benefits, design and application criteria. Provide a state-of-the-art, ongoing R&D review Covers comprehensive energy storage hybridization tactics Features standalone chapters containing technology advances, design and applications


Nuclear Hybrid Energy Systems

Nuclear Hybrid Energy Systems

Author:

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis.


Hybrid Nuclear Energy Systems

Hybrid Nuclear Energy Systems

Author: Michael F. Keller

Publisher: Academic Press

Published: 2021-01-30

Total Pages: 324

ISBN-13: 012824108X

DOWNLOAD EBOOK

Hybrid Nuclear Energy Systems: A Sustainable Solution for the 21st Century provides practical insights on the environmental impact of the hybrid systems discussed, as well as important technical, economic, licensing and safety considerations. This book acts as a guide for the implementation of hybrid energy systems and authoritatively compares the benefits and possible downfalls of each technology. This enables the reader to analyze their own setting or research and evaluate the most economical and effective solution. Energy engineering researchers and professional engineers will benefit from the practical and technical approach of this book. This book will also benefit regulators and economists who will gain a clear understanding of how a hybrid system is not only designed, but also how societies will benefit from a cleaner and more abundant energy source. Provides a comprehensive analysis of hybrid energy systems and their associated benefits and possible shortcomings Provides the latest technical, environmental, economic, safety and regulatory research Ranks key energy production methods against novel hybrid systems to highlight possibilities


Construction of Hybrid Nuclear Thermal Energy Storage Systems Under Electricity Market Uncertainty

Construction of Hybrid Nuclear Thermal Energy Storage Systems Under Electricity Market Uncertainty

Author: William Neal Mann

Publisher:

Published: 2017

Total Pages: 172

ISBN-13:

DOWNLOAD EBOOK

The objective of this thesis is to simulate the construction of thermal energy storage systems for nuclear power plants in the ERCOT grid. Steam accumulators were selected as the thermal energy storage technology. A thermo-economic model was used to estimate the operating and cost parameters for sixteen different steam accumulator designs. A new capacity expansion model of the ERCOT grid was built on top of an existing production cost model for wholesale electricity market simulations. Sixteen permutations of four scenario pairs were simulated to illustrate the uncertainty of future market conditions. It was optimal to build steam accumulators in three of the permutations. Scenarios common to these per-mutations were high future natural gas prices (three permutations), aggressive capital cost declines for solar PV and wind generators (three), high load growth (two), and a carbon tax (two). This suggests that large-scale thermal energy storage systems may be most successful in future markets under these conditions.


Analysis and Design of Hybrid Energy Storage Systems

Analysis and Design of Hybrid Energy Storage Systems

Author: Jorge Garcia

Publisher: MDPI

Published: 2020-04-17

Total Pages: 181

ISBN-13: 3039286862

DOWNLOAD EBOOK

The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually. Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications. This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.).


Nuclear Reactor Technology Development and Utilization

Nuclear Reactor Technology Development and Utilization

Author: Salah Ud-Din Khan

Publisher: Woodhead Publishing

Published: 2020-06-16

Total Pages: 514

ISBN-13: 0128189436

DOWNLOAD EBOOK

Nuclear Reactor Technology Development and Utilization presents the theory and principles of the most common advanced nuclear reactor systems and provides a context for the value and utilization of nuclear power in a variety of applications both inside and outside a traditional nuclear setting. As countries across the globe realize their plans for a sustainable energy future, the need for innovative nuclear reactor design is increasing, and this book will provide a deep understanding of how these technologies can aid in a region’s goal for clean and reliable energy. Dr Khan and Dr Nakhabov, alongside their team of expert contributors, discuss a variety of important topics, including nuclear fuel cycles, plant decommissioning and hybrid energy systems, while considering a variety of diverse uses such as nuclear desalination, hydrogen generation and radioisotope production. Knowledge acquired enables the reader to conduct further research in academia and industry, and apply the latest design, development, integration, safety and economic guidance to their work and research. Combines reactor fundamentals with a contemporary look at evolving trends in the design of advanced reactors and their application to both nuclear and non-nuclear uses Analyses the latest research and uses of hybrid systems which bring together nuclear technology with renewable energy technologies Presents applications, economic factors and an analysis of sustainability factors in one comprehensive resource


Nuclear Hybrid Energy System

Nuclear Hybrid Energy System

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most efficient idealized energy storage system is the two tank direct molten salt ESS with an Air Brayton combined cycle using LiF-NaF-KF as the molten salt, and the most economical is the same design with KCl MgCl2 as the molten salt. With energy production being a major worldwide industry, understanding the most efficient molten salt ESS boosts development of an effective NHES with cheap, clean, and steady power.


Hybrid Renewable Energy Systems and Microgrids

Hybrid Renewable Energy Systems and Microgrids

Author: Ersan Kabalci

Publisher: Academic Press

Published: 2020-11-21

Total Pages: 529

ISBN-13: 012823248X

DOWNLOAD EBOOK

Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components. Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems. Presents detailed contents on emerging power networks provided by decentralized and distributed generation approaches Covers driving factors, photovoltaic based power plant modeling and planning studies Introduces hierarchical control methods and technologies applied in microgrid operations to ensure reliability, resilience and flexibility of hybrid energy systems