Originally published in 1985, this textbook provides a thorough and comprehensive coverage of a wide range of topics in stoichiometry and thermodynamics with special emphasis on applications to metallurgical processes. This book will be welcomed as a text for courses in elementary and advanced thermodynamics and stoichiometry.
The Book Attempts To Present A Comprehensive View Of Extractive Metallurgy, Especially Principles Of Extractive Metallurgy In A Concise Form. This Is The First Book In This Area Which Attempts To Do It. It Has Been Written In Textbook Style. It Presents The Various Concepts Step By Step, Shows Their Importance, Deals With Elementary Quantitative Formulations, And Illustrates Through Quantitative And Qualitative Informations. The Approach Is Such That Even Undergraduate Students Would Be Able To Follow The Topics Without Much Difficulty And Without Much Of A Background In Specialized Subjects. This Is Considered To Be A Very Useful Approach In This Area Of Technology. Moreover The Inter-Disciplinary Nature Of The Subject Has Been Duely Brought Out.While Teaching Concerned Course(S) In The Undergraduate And Postgraduate Level The Authors Felt The Need Of Such A Book. The Authors Found The Books Available On The Subject Did Not Fulfill The Requirements. No Other Book Was Concerned With All Relevant Concepts. Most Of Them Laid Emphasis Either On Thermodynamic Aspects Or On Discussing Unit Processes. Transport Phenomena Are Dealt With In Entirely Different Books. Reactor Concepts Were Again Lying In Chemical Engineering Texts. The Authors Tried To Harmonize And Synthesize The Concepts In Elementary Terms For Metallurgists.The Present Book Contains A Brief Descriptive Summary Of Some Important Metallurgical Unit Processes. Subsequently It Discusses Not Only Physical Chemistry Of Metallurgical Reactions And Processes But Also Rate Phenomena Including Heat And Mass Transfer, Fluid Flow, Mass And Energy Balance, And Elements Of Reactor Engineering. A Variety Of Scientific And Engineering Aspects Of Unit Processes Have Been Discussed With Stress On The Basic Principles All Throughout. There Is An Attempt To Introduce, As Much As Possible, Quantitative Treatments And Engineering Estimates. The Latter May Often Be Approximate From The Point Of View Of Theory But Yields Results That Are Very Valuable To Both Practicing Metallurgists As Well As Others.
Treatise on Process Metallurgy: Volume One, Process Fundamentals provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. In these fully updated volumes, coverage is expanded into four volumes, including Process Fundamentals, encompassing process fundamentals, structure and properties of matter; thermodynamic aspects of process metallurgy, and rate phenomena in process metallurgy; Processing Phenomena, encompassing interfacial phenomena in high temperature metallurgy, metallurgical process phenomena, and metallurgical process technology; Metallurgical Processes, encompassing mineral processing, aqueous processing, electrochemical material and energy processes, and iron and steel technology, non-ferrous process principles and production technologies, and more. The work distills the combined academic experience from the principal editor and the multidisciplinary four-member editorial board. Provides the entire breadth of process metallurgy in a single work Includes in-depth knowledge in all key areas of process metallurgy Approaches the topic from an interdisciplinary perspective, providing broad range coverage on topics
Lately, there has been a renewed push to minimize the waste of materials and energy that accompany the production and processing of various materials. This third edition of this reference emphasizes the fundamental principles of the conservation of mass and energy, and their consequences as they relate to materials and energy. New to this edition are numerous worked examples, illustrating conventional and novel problem-solving techniques in applications such as semiconductor processing, environmental engineering, the production and processing of advanced and exotic materials for aerospace, electronic, and structural applications.
This book is a must for individuals and companies that have an interest in developing sustainable technology and systems in the complex 'Web of Metals' on a first principles, technological and economic basis, with a focus to the minerals, metals and product manufacturing industries. In this inter-, intra- and trans-disciplinary book the material/metal cycle will be central, addressing technology as the basis for achieving sustainability within the system of primary mineral and metal producing, and the consumer product material cycles, linked to nature's cycles. The following major topics (not exclusive) are discussed in a detail, which will satisfy company CEO's and students of environment, engineering, economics, and law alike: (i) industrial ecology, (ii) system engineering concepts, (iii) development of future breakthrough technology as well optimization of present technology, (iv) process fundamentals (e.g. thermodynamics, separation physics, transport processes etc.), (v) product manufacture and design (for recycling), (vi) environmental legislation and (vii) technology as a basis for achieving sustainability within our present society.The book discusses contentious issues such as the limits of recycling determined by physics, chemistry, economics and process technology, therefore providing the reader with a fundamental basis to understand and critically discuss the validity of environmental legislation. Furthermore, the 'Web of Metals' (i.e. the dynamic interconnection of metal and material cycles and product systems) will reveal that, if the application of environmental evaluation techniques such as material flow analysis, life cycle assessment etc. are not carried out on a sufficient theoretical basis, technological and economic understanding, analyses could lead to erroneous and in the end environmentally harmful conclusions.The book is illustrated with many industrial examples embracing car and electronic consumer goods manufacturing and recycling, and the production and recycling of all major metals (e.g. steel, aluminium, copper, zinc, lead, magnesium, PGM's and PM's) and to an extent plastics. A complete section of the book is devoted to the recycling of light metals. Numerous colour figures and photos, plant and reactor data as well as software and computer models (running under Matlab's SimulinkĀ® and AMPLĀ® as well as tools based on neural net technology (CSenseTM) are provided to give the reader the opportunity to investigate the various topics addressed in this book at various levels of depth and theoretical sophistication, providing a wealth of information, share-data and industrial know-how.Finally, the book philosophically discusses how to harmonize the resource, life and technological cycles depicted by the figure on the cover to make a contribution to the sustainable use of resources and products.* Material and Metal Ecology and the various modelling aspects to quantify this * System modelling of recycling systems with applications in the automotive and consumergoods sector* Metallurgical metal recycling with applications in aluminium, supplemented with various modelling examples from thermodynamics, exergy, neural nets to CFD
This edition of Thermodynamics is a thoroughly revised, streamlined, and cor rected version of the book of the same title, first published in 1975. It is intended for students, practicing engineers, and specialists in materials sciences, metallur gical engineering, chemical engineering, chemistry, electrochemistry, and related fields. The present edition contains many additional numerical examples and prob lems. Greater emphasis is put on the application of thermodynamics to chemical, materials, and metallurgical problems. The SI system has been used through out the textbook. In addition, a floppy disk for chemical equilibrium calculations is enclosed inside the back cover. It contains the data for the elements, oxides, halides, sulfides, and other inorganic compounds. The subject material presented in chapters III to XIV formed the basis of a thermodynamics course offered by one of the authors (R.G. Reddy) for the last 14 years at the University of Nevada, Reno. The subject matter in this book is based on a minimum number of laws, axioms, and postulates. This procedure avoids unnecessary repetitions, often encountered in books based on historical sequence of development in thermodynamics. For example, the Clapeyron equation, the van't Hoff equation, and the Nernst distribution law all refer to the Gibbs energy changes of relevant processes, and they need not be presented as radically different relationships.
An Introduction to Materials Engineering and Science for Chemical and Materials Engineers provides a solid background in materials engineering and science for chemical and materials engineering students. This book: Organizes topics on two levels; by engineering subject area and by materials class. Incorporates instructional objectives, active-learning principles, design-oriented problems, and web-based information and visualization to provide a unique educational experience for the student. Provides a foundation for understanding the structure and properties of materials such as ceramics/glass, polymers, composites, bio-materials, as well as metals and alloys. Takes an integrated approach to the subject, rather than a "metals first" approach.
The aim of each volume of this series Guides to Information Sources is to reduce the time which needs to be spent on patient searching and to recommend the best starting point and sources most likely to yield the desired information. The criteria for selection provide a way into a subject to those new to the field and assists in identifying major new or possibly unexplored sources to those who already have some acquaintance with it. The series attempts to achieve evaluation through a careful selection of sources and through the comments provided on those sources.
Problems in Metallurgical Thermodynamics and Kinetics provides an illustration of the calculations encountered in the study of metallurgical thermodynamics and kinetics, focusing on theoretical concepts and practical applications. The chapters of this book provide comprehensive account of the theories, including basic and applied numerical examples with solutions. Unsolved numerical examples drawn from a wide range of metallurgical processes are also provided at the end of each chapter. The topics discussed include the three laws of thermodynamics; Clausius-Clapeyron equation; fugacity, activity, and equilibrium constant; thermodynamics of electrochemical cells; and kinetics. This book is beneficial to undergraduate and postgraduate students in universities, polytechnics, and technical colleges.
This book deals with the fundamental description of the thermodynamics and kinetics of high temperature oxidation of sulphidation of metals and intermetallic compounds. It is a comprehensive account of a large amount of new work in the field including modelling, analysis and a range of experimental methods. The text deals with both basic materials, and some current high temperature structural materials.