Stochastic Volatility and Time Deformation
Author: Joann Jasiak
Publisher:
Published: 2012
Total Pages:
ISBN-13:
DOWNLOAD EBOOKIn this paper, we study stochastic volatility models with time deformation. Such processes relate to the early work by Mandelbrot and Taylor (1967), Clark (1973), Tauchen and Pitts (1983), among others. In our setup, the latent process of stochastic volatility evolves in an operational time which differs from calendar time. The time deformation can be determined by past volume of trade, past returns, possibly with an asymmetric leverage effect, and other variables setting the pace of information arrival. The econometric specification exploits the state-space approach for stochastic volatility models proposed by Harvey, Ruiz and Shephard (1994) as well as the matching moment estimation procedure using SNP densities of stock returns and trading volume estimated by Gallant, Rossi and Tauchen (1992). Daily data on returns and trading volume of the NYSE are used in the empirical application. Supporting evidence for a time deformation representation is found and its impact on the behavior of returns and volume is analyzed. We find that increases in volume accelerate operational time, resulting in volatility being less persistent and subject to shocks with a higher innovation variance. Downward price movements have similar effects while upward price movements increase the persistence in volatility and decrease the dispersion of shocks by slowing down market time. We present the basic model as well as several extensions; in particular, we formulate and estimate a bivariate return-volume stochastic volatility model with time deformation. The latter is examined through bivariate impulse response profiles following the example of Gallant, Rossi and Tauchen (1993).