The stochastic resonance phenomenon has been observed in many forms of systems and has been debated by scientists for 30 years. Applications incorporating aspects of stochastic resonance have yet to prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. The initial chapters review stochastic resonance basics and outline some of the controversies and debates that have surrounded it. The book continues to discuss stochastic quantization in a model where all threshold devices are not necessarily identical, but are still independently noisy. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers. Each chapter ends with a review summarizing the main points, and open questions to guide researchers into finding new research directions.
Stochastic Resonance: Theory and Applications deals with the theory of noise-added systems and in particular with Stochastic Resonance, a quite novel theory that was introduced in the 1980s to provide better understanding of some natural phenomena (e.g. ice age recurrence). Following the very first works, a number of different applications to both natural and human-produced phenomena were proposed. The book aims to improve the understanding of noise-based techniques and to focus on practical applications of this class of phenomena (an aspect that has been very poorly investigated up to now). Based on this objective, the book is roughly divided into two parts. The first part deals with the essential theory of noise-added systems and in particular a new approach to noise-added techniques that allows a number of strategies proposed in previous years to be unified. The proposed approach also allows real-time control of the noise characteristics, assuring optimal system performance. In the second part a large number of applications are described in detail in the field of electric and electronic devices, with the aim of allowing readers to build their own experimental set. The book comes with a diskette of educational software that the authors developed. Stochastic Resonance: Theory and Applications is an invaluable reference for students, researchers and engineering professionals working in the fields of electric and electronic measurements, electronics and signal theory.
Stochastic Resonance: Theory and Applications deals with the theory of noise-added systems and in particular with Stochastic Resonance, a quite novel theory that was introduced in the 1980s to provide better understanding of some natural phenomena (e.g. ice age recurrence). Following the very first works, a number of different applications to both natural and human-produced phenomena were proposed. The book aims to improve the understanding of noise-based techniques and to focus on practical applications of this class of phenomena (an aspect that has been very poorly investigated up to now). Based on this objective, the book is roughly divided into two parts. The first part deals with the essential theory of noise-added systems and in particular a new approach to noise-added techniques that allows a number of strategies proposed in previous years to be unified. The proposed approach also allows real-time control of the noise characteristics, assuring optimal system performance. In the second part a large number of applications are described in detail in the field of electric and electronic devices, with the aim of allowing readers to build their own experimental set. The book comes with a diskette of educational software that the authors developed. Stochastic Resonance: Theory and Applications is an invaluable reference for students, researchers and engineering professionals working in the fields of electric and electronic measurements, electronics and signal theory.
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme simplicity and robustness has made it the circuit of choice for generating chaotic signals for practical applications.In addition to the 48 illuminating papers drawn from a recent two-part Special Issue (March and June, 1993) of the Journal of Circuits, Systems, and Computers devoted exclusively to Chua's circuit, several highly illustrative tutorials and incisive state-of-the-art reviews on the latest experimental, computational, and analytical investigations on chaos are also included. To enhance its pedagogical value, a diskette containing a user-friendly software and data base on many basic chaotic phenomena is attached to the book, as well as a gallery of stunningly colorful strange attractors.Beginning with an elementary (freshman-level physics) introduction on experimental chaos, the book presents a step-by-step guided tour, with papers of increasing complexity, which covers almost every conceivable aspects of bifurcation and chaos. The second half of the book contains many original materials contributed by world-renowned authorities on chaos, including L P Shil'nikov, A N Sharkovsky, M Misiurewicz, A I Mees, R Lozi, L O Chua and V S Afraimovich.The scope of topics covered is quite comprehensive, including at least one paper on each of the following topics: routes to chaos, 1-D maps, universality, self-similarity, 2-parameter renormalization group analysis, piecewise-linear dynamics, slow-fast dynamics, confinor analysis, symmetry breaking, strange attractors, basins of attraction, geometric invariants, time-series reconstruction, Lyapunov exponents, bispectral analysis, homoclinic bifurcation, stochastic resonance, synchronization, and control of chaos, as well as several novel applications of chaos, including secure communications, visual sensing, neural networks, dry turbulence, nonlinear waves and music.
The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.
The book is suitable for a lecture course on the theory of Brownian motion, being based on final year undergraduate lectures given at Trinity College, Dublin. Topics that are discussed include: white noise; the Chapman-Kolmogorov equation ? Kramers-Moyal expansion; the Langevin equation; the Fokker-Planck equation; Brownian motion of a free particle; spectral density and the Wiener-Khintchin theorem ? Brownian motion in a potential application to the Josephson effect, ring laser gyro; Brownian motion in two dimensions; harmonic oscillators; itinerant oscillators; linear response theory; rotational Brownian motion; application to loss processes in dielectric and ferrofluids; superparamagnetism and nonlinear relaxation processes.As the first elementary book on the Langevin equation approach to Brownian motion, this volume attempts to fill in all the missing details which students find particularly hard to comprehend from the fundamental papers contained in the Dover reprint ? Selected Papers on Noise and Stochastic Processes, ed. N Wax (1954) ? together with modern applications particularly to relaxation in ferrofluids and polar dielectrics.
An introduction to the application of dynamical systems science to the cognitive sciences. Dynamical Cognitive Science makes available to the cognitive science community the analytical tools and techniques of dynamical systems science, adding the variables of change and time to the study of human cognition. The unifying theme is that human behavior is an "unfolding in time" whose study should be augmented by the application of time-sensitive tools from disciplines such as physics, mathematics, and economics, where change over time is of central importance. The book provides a fast-paced, comprehensive introduction to the application of dynamical systems science to the cognitive sciences. Topics include linear and nonlinear time series analysis, chaos theory, complexity theory, relaxation oscillators, and metatheoretical issues of modeling and theory building. Tools and techniques are discussed in the context of their application to basic cognitive science problems, including perception, memory, psychophysics, judgment and decision making, and consciousness. The final chapter summarizes the contemporary study of consciousness and suggests how dynamical approaches to cognitive science can help to advance our understanding of this central concept.