Stochastic Differential Systems, Stochastic Control Theory and Applications

Stochastic Differential Systems, Stochastic Control Theory and Applications

Author: Wendell Fleming

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 601

ISBN-13: 1461387620

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications STOCHASTIC DIFFERENTIAL SYSTEMS, STOCHASTIC CONTROL THEORY AND APPLICATIONS is the proceedings of a workshop which was an integral part of the 1986-87 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS. We are grateful to the Scientific Committee: Daniel Stroock (Chairman) WendeIl Flerning Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We es pecially thank WendeIl Fleming and Pierre-Louis Lions for organizing an interesting and productive workshop in an area in which mathematics is beginning to make significant contributions to real-world problems. George R. Seil Hans Weinberger PREFACE This volume is the Proceedings of a Workshop on Stochastic Differential Systems, Stochastic Control Theory, and Applications held at IMA June 9-19,1986. The Workshop Program Commit tee consisted of W.H. Fleming and P.-L. Lions (co-chairmen), J. Baras, B. Hajek, J.M. Harrison, and H. Sussmann. The Workshop emphasized topics in the following four areas. (1) Mathematical theory of stochastic differential systems, stochastic control and nonlinear filtering for Markov diffusion processes. Connections with partial differential equations. (2) Applications of stochastic differential system theory, in engineering and management sci ence. Adaptive control of Markov processes. Advanced computational methods in stochas tic control and nonlinear filtering. (3) Stochastic scheduling, queueing networks, and related topics. Flow control, multiarm bandit problems, applications to problems of computer networks and scheduling of complex manufacturing operations.


Stochastic Differential Equations and Applications

Stochastic Differential Equations and Applications

Author: Avner Friedman

Publisher: Academic Press

Published: 2014-06-20

Total Pages: 248

ISBN-13: 1483217876

DOWNLOAD EBOOK

Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov’s formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.


Stochastic Differential Equations

Stochastic Differential Equations

Author: Peter H. Baxendale

Publisher: World Scientific

Published: 2007

Total Pages: 416

ISBN-13: 9812706623

DOWNLOAD EBOOK

The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.


Stochastic Controls

Stochastic Controls

Author: Jiongmin Yong

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 459

ISBN-13: 1461214661

DOWNLOAD EBOOK

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.


Stochastic Differential Inclusions and Applications

Stochastic Differential Inclusions and Applications

Author: Michał Kisielewicz

Publisher: Springer Science & Business Media

Published: 2013-06-12

Total Pages: 295

ISBN-13: 146146756X

DOWNLOAD EBOOK

​This book aims to further develop the theory of stochastic functional inclusions and their applications for describing the solutions of the initial and boundary value problems for partial differential inclusions. The self-contained volume is designed to introduce the reader in a systematic fashion, to new methods of the stochastic optimal control theory from the very beginning. The exposition contains detailed proofs and uses new and original methods to characterize the properties of stochastic functional inclusions that, up to the present time, have only been published recently by the author. The work is divided into seven chapters, with the first two acting as an introduction, containing selected material dealing with point- and set-valued stochastic processes, and the final two devoted to applications and optimal control problems. The book presents recent and pressing issues in stochastic processes, control, differential games, optimization and their application in finance, manufacturing, queueing networks, and climate control. Written by an award-winning author in the field of stochastic differential inclusions and their application to control theory, This book is intended for students and researchers in mathematics and applications; particularly those studying optimal control theory. It is also highly relevant for students of economics and engineering. The book can also be used as a reference on stochastic differential inclusions. Knowledge of select topics in analysis and probability theory are required.


Introduction to Stochastic Control Theory

Introduction to Stochastic Control Theory

Author: Karl J. Åström

Publisher: Courier Corporation

Published: 2012-05-11

Total Pages: 322

ISBN-13: 0486138275

DOWNLOAD EBOOK

This text for upper-level undergraduates and graduate students explores stochastic control theory in terms of analysis, parametric optimization, and optimal stochastic control. Limited to linear systems with quadratic criteria, it covers discrete time as well as continuous time systems. The first three chapters provide motivation and background material on stochastic processes, followed by an analysis of dynamical systems with inputs of stochastic processes. A simple version of the problem of optimal control of stochastic systems is discussed, along with an example of an industrial application of this theory. Subsequent discussions cover filtering and prediction theory as well as the general stochastic control problem for linear systems with quadratic criteria. Each chapter begins with the discrete time version of a problem and progresses to a more challenging continuous time version of the same problem. Prerequisites include courses in analysis and probability theory in addition to a course in dynamical systems that covers frequency response and the state-space approach for continuous time and discrete time systems.