Stochastic Approach to Chemical Kinetics
Author: Donald Allan McQuarrie
Publisher:
Published: 1968
Total Pages: 82
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Donald Allan McQuarrie
Publisher:
Published: 1968
Total Pages: 82
ISBN-13:
DOWNLOAD EBOOKAuthor: Péter Érdi
Publisher: Springer
Published: 2014-05-06
Total Pages: 174
ISBN-13: 149390387X
DOWNLOAD EBOOKThis volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.
Author: Paola Lecca
Publisher: Elsevier
Published: 2013-04-09
Total Pages: 411
ISBN-13: 1908818212
DOWNLOAD EBOOKStochastic kinetic methods are currently considered to be the most realistic and elegant means of representing and simulating the dynamics of biochemical and biological networks. Deterministic versus stochastic modelling in biochemistry and systems biology introduces and critically reviews the deterministic and stochastic foundations of biochemical kinetics, covering applied stochastic process theory for application in the field of modelling and simulation of biological processes at the molecular scale. Following an overview of deterministic chemical kinetics and the stochastic approach to biochemical kinetics, the book goes onto discuss the specifics of stochastic simulation algorithms, modelling in systems biology and the structure of biochemical models. Later chapters cover reaction-diffusion systems, and provide an analysis of the Kinfer and BlenX software systems. The final chapter looks at simulation of ecodynamics and food web dynamics. Introduces mathematical concepts and formalisms of deterministic and stochastic modelling through clear and simple examples Presents recently developed discrete stochastic formalisms for modelling biological systems and processes Describes and applies stochastic simulation algorithms to implement a stochastic formulation of biochemical and biological kinetics
Author: Peter Schuster
Publisher: Springer
Published: 2016-10-14
Total Pages: 728
ISBN-13: 3319395025
DOWNLOAD EBOOKThis book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed to produce artifacts in interpretation unless the observer has a solid background in the mathematics of limited reproducibility. The material covered is presented in a modular approach, allowing more advanced sections to be skipped if the reader is primarily interested in applications. At the same time, most derivations of analytical solutions for the selected examples are provided in full length to guide more advanced readers in their attempts to derive solutions on their own. The book employs uniform notation throughout, and a glossary has been added to define the most important notions discussed.
Author: Hong Qian
Publisher: Springer Nature
Published: 2021-10-18
Total Pages: 364
ISBN-13: 3030862526
DOWNLOAD EBOOKThis book provides an introduction to the analysis of stochastic dynamic models in biology and medicine. The main aim is to offer a coherent set of probabilistic techniques and mathematical tools which can be used for the simulation and analysis of various biological phenomena. These tools are illustrated on a number of examples. For each example, the biological background is described, and mathematical models are developed following a unified set of principles. These models are then analyzed and, finally, the biological implications of the mathematical results are interpreted. The biological topics covered include gene expression, biochemistry, cellular regulation, and cancer biology. The book will be accessible to graduate students who have a strong background in differential equations, the theory of nonlinear dynamical systems, Markovian stochastic processes, and both discrete and continuous state spaces, and who are familiar with the basic concepts of probability theory.
Author: János Tóth
Publisher:
Published: 2018
Total Pages: 469
ISBN-13: 9781493986422
DOWNLOAD EBOOKFifty years ago, a new approach to reaction kinetics began to emerge: one based on mathematical models of reaction kinetics, or formal reaction kinetics. Since then, there has been a rapid and accelerated development in both deterministic and stochastic kinetics, primarily because mathematicians studying differential equations and algebraic geometry have taken an interest in the nonlinear differential equations of kinetics, which are relatively simple, yet capable of depicting complex behavior such as oscillation, chaos, and pattern formation. The development of stochastic models was triggered by the fact that novel methods made it possible to measure molecules individually. Now it is high time to make the results of the last half-century available to a larger audience: students of chemistry, chemical engineering and biochemistry, not to mention applied mathematics. Based on recent papers, this book presents the most important concepts and results, together with a wealth of solved exercises. The book is accompanied by the authors' Mathematica package, ReactionKinetics, which helps both students and scholars in their everyday work, and which can be downloaded from http://extras.springer.com/ and also from the authors' websites. Further, the large set of unsolved problems provided may serve as a springboard for individual research.
Author: Moisés Santillán
Publisher: Springer
Published: 2014-06-27
Total Pages: 139
ISBN-13: 3319066897
DOWNLOAD EBOOKThis book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry and biochemistry together in an introductory but formal and comprehensive manner. Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework. Furthermore, each new mathematical derivation is immediately applied to one or more biological systems. The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and molecular motors. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians and engineers), as well as with basic notions of biochemistry and cellular biology. This book can also be useful to students with a biological background who are interested in mathematical modeling and have a working knowledge of calculus, differential equations and a basic understanding of probability theory.
Author: Péter Érdi
Publisher: Manchester University Press
Published: 1989
Total Pages: 296
ISBN-13: 9780719022081
DOWNLOAD EBOOKAuthor: Yiannis N. Kaznessis
Publisher: Cambridge University Press
Published: 2012
Total Pages: 329
ISBN-13: 0521765617
DOWNLOAD EBOOKProvides engineers with the knowledge they need to apply thermodynamics and solve engineering challenges at the molecular level.
Author: Daniel Thomas Gillespie
Publisher: OUP Oxford
Published: 2012-10-18
Total Pages: 336
ISBN-13: 0191641537
DOWNLOAD EBOOKBrownian diffusion is the motion of one or more solute molecules in a sea of very many, much smaller solvent molecules. Its importance today owes mainly to cellular chemistry, since Brownian diffusion is one of the ways in which key reactant molecules move about inside a living cell. This book focuses on the four simplest models of Brownian diffusion: the classical Fickian model, the Einstein model, the discrete-stochastic (cell-jumping) model, and the Langevin model. The authors carefully develop the theories underlying these models, assess their relative advantages, and clarify their conditions of applicability. Special attention is given to the stochastic simulation of diffusion, and to showing how simulation can complement theory and experiment. Two self-contained tutorial chapters, one on the mathematics of random variables and the other on the mathematics of continuous Markov processes (stochastic differential equations), make the book accessible to researchers from a broad spectrum of technical backgrounds.