I. Learning & Memory: Elizabeth Phelps & Lila Davachi (Volume Editors) Topics covered include working memory; fear learning; education and memory; memory and future imagining; sleep and memory; emotion and memory; motivation and memory; inhibition in memory; attention and memory; aging and memory; autobiographical memory; eyewitness memory; and category learning.
I. Learning & Memory: Elizabeth Phelps & Lila Davachi (Volume Editors) Topics covered include working memory; fear learning; education and memory; memory and future imagining; sleep and memory; emotion and memory; motivation and memory; inhibition in memory; attention and memory; aging and memory; autobiographical memory; eyewitness memory; and category learning.
Since the first edition was published in 1951, The Stevens' Handbook of Experimental Psychology has been recognized as the standard reference in the field. The most recent (3rd) edition of the handbook was published in 2004, and it was a success by any measure. But the field of experimental psychology has changed in dramatic ways since then. Throughout the first 3 editions of the handbook, the changes in the field were mainly quantitative in nature. That is, the size and scope of the field grew steadily from 1951 to 2004, a trend that was reflected in the growing size of the handbook itself: the 1-volume first edition (1951) was succeeded by a 2-volume second edition (1988) and then by a 4-volume third edition (2004). Since 2004, however, this still-growing field has also changed qualitatively in the sense that, in virtually every subdomain of experimental psychology, theories of the mind have evolved into theories of the brain. Research methods in experimental psychology have changed accordingly and now include not only venerable EEG recordings (long a staple of research in psycholinguistics) but also MEG, fMRI, TMS, and single-unit recording. The trend towards neuroscience is an absolutely dramatic, worldwide phenomenon that is unlikely to ever be reversed. Thus, the era of purely behavioral experimental psychology is already long gone, even though not everyone has noticed. Experimental psychology and "cognitive neuroscience" (an umbrella term that includes behavioral neuroscience, social neuroscience and developmental neuroscience) are now inextricably intertwined. Nearly every major psychology department in the country has added cognitive neuroscientists to its ranks in recent years, and that trend is still growing. A viable handbook of experimental psychology should reflect the new reality on the ground. There is no handbook in existence today that combines basic experimental psychology and cognitive neuroscience, this despite the fact that the two fields are interrelated – and even interdependent – because they are concerned with the same issues (e.g., memory, perception, language, development, etc.). Almost all neuroscience-oriented research takes as its starting point what has been learned using behavioral methods in experimental psychology. In addition, nowadays, psychological theories increasingly take into account what has been learned about the brain (e.g., psychological models increasingly need to be neurologically plausible). These considerations explain why this edition of: The Stevens' Handbook of Experimental Psychology is now called The Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience. The title serves as a reminder that the two fields go together and as an announcement that the Stevens' Handbook covers it all. The 4th edition of the Stevens’ Handbook is a 5-volume set structured as follows: I. Learning & Memory: Elizabeth Phelps & Lila Davachi (Volume Editors) Topics include fear learning; time perception; working memory; visual object recognition; memory and future imagining; sleep and memory; emotion and memory; attention and memory; motivation and memory; inhibition in memory; education and memory; aging and memory; autobiographical memory; eyewitness memory; and category learning. II. Sensation, Perception & Attention: John Serences (Volume Editor) Topics include attention; vision; color vision; visual search; depth perception; taste; touch; olfaction; motor control; perceptual learning; audition; music perception; multisensory integration; vestibular, proprioceptive, and haptic contributions to spatial orientation; motion perception; perceptual rhythms; the interface theory of perception; perceptual organization; perception and interactive technology; perception for action. III. Language & Thought: Sharon Thompson-Schill (Volume Editor) Topics include reading; discourse and dialogue; speech production; sentence processing; bilingualism; concepts and categorization; culture and cognition; embodied cognition; creativity; reasoning; speech perception; spatial cognition; word processing; semantic memory; moral reasoning. IV. Developmental & Social Psychology: Simona Ghetti (Volume Editor) Topics include development of visual attention; self-evaluation; moral development; emotion-cognition interactions; person perception; memory; implicit social cognition; motivation group processes; development of scientific thinking; language acquisition; category and conceptual development; development of mathematical reasoning; emotion regulation; emotional development; development of theory of mind; attitudes; executive function. V. Methodology: E. J. Wagenmakers (Volume Editor) Topics include hypothesis testing and statistical inference; model comparison in psychology; mathematical modeling in cognition and cognitive neuroscience; methods and models in categorization; serial versus parallel processing; theories for discriminating signal from noise; Bayesian cognitive modeling; response time modeling; neural networks and neurocomputational modeling; methods in psychophysics analyzing neural time series data; convergent methods of memory research; models and methods for reinforcement learning; cultural consensus theory; network models for clinical psychology; the stop-signal paradigm; fmri; neural recordings; open science.
V. Methodology: E. J. Wagenmakers (Volume Editor) Topics covered include methods and models in categorization; cultural consensus theory; network models for clinical psychology; response time modeling; analyzing neural time series data; models and methods for reinforcement learning; convergent methods of memory research; theories for discriminating signal from noise; bayesian cognitive modeling; mathematical modeling in cognition and cognitive neuroscience; the stop-signal paradigm; hypothesis testing and statistical inference; model comparison in psychology; fmri; neural recordings; open science; neural networks and neurocomputational modeling; serial versus parallel processing; methods in psychophysics.
Recent advances in techniques available to memory researchers have led to a rapid expansion in the field of cognitive neuroscience of memory. This book provides accessible coverage of four key areas of recent advance, including research on functional imaging, electrophysiological and lesion studies, and developments from the computational modelling approach. The first section reviews functional imaging studies in humans, with particular emphasis on how imaging methods have clarified the cortical areas involved in memory formation and retrieval. The second section describes electrophysiological and lesion research in monkeys, where lesion and disconnection studies are rapidly adding to our knowledge of both information processing and modulatory aspects of memory formation. In the third section, electrophysiological and lesion studies in rats are reviewed allowing for a detailed study of the role of novelty and exploration in memory formation. The final section reviews current research in computational modelling which has allowed the development of new theoretical and experimental approaches to the study of memory encoding and retrieval. This volume draws together the current developments in each field, allowing the synthesis of ideas and providing converging evidence from a range of sources. It will be a useful resource for both advanced undergraduate and postgraduate students of psychology, as well as researchers in the field and anyone with an interest in cognitive neuroscience.
Now available in paperback. This revised and updated edition of the definitive resource for experimental psychology offers comprehensive coverage of the latest findings in the field, as well as the most recent contributions in methodology and the explosion of research in neuroscience. Volume Two: Memory and Cognitive Processes, focuses on the neurological and cognitive processes on topics such as memory, decision-making, spatial cognition, linguistics, reasoning, and concepts.
Cognition, Brain, and Consciousness, Second Edition, provides students and readers with an overview of the study of the human brain and its cognitive development.It discusses brain molecules and their primary function, which is to help carry brain signals to and from the different parts of the human body. These molecules are also essential for understanding language, learning, perception, thinking, and other cognitive functions of our brain. The book also presents the tools that can be used to view the human brain through brain imaging or recording.New to this edition are Frontiers in Cognitive Neuroscience text boxes, each one focusing on a leading researcher and their topic of expertise. There is a new chapter on Genes and Molecules of Cognition; all other chapters have been thoroughly revised, based on the most recent discoveries.This text is designed for undergraduate and graduate students in Psychology, Neuroscience, and related disciplines in which cognitive neuroscience is taught. - New edition of a very successful textbook - Completely revised to reflect new advances, and feedback from adopters and students - Includes a new chapter on Genes and Molecules of Cognition - Student Solutions available at http://www.baars-gage.com/ For Teachers: - Rapid adoption and course preparation: A wide array of instructor support materials are available online including PowerPoint lecture slides, a test bank with answers, and eFlashcords on key concepts for each chapter. - A textbook with an easy-to-understand thematic approach: in a way that is clear for students from a variety of academic backgrounds, the text introduces concepts such as working memory, selective attention, and social cognition. - A step-by-step guide for introducing students to brain anatomy: color graphics have been carefully selected to illustrate all points and the research explained. Beautifully clear artist's drawings are used to 'build a brain' from top to bottom, simplifying the layout of the brain. For students: - An easy-to-read, complete introduction to mind-brain science: all chapters begin from mind-brain functions and build a coherent picture of their brain basis. A single, widely accepted functional framework is used to capture the major phenomena. - Learning Aids include a student support site with study guides and exercises, a new Mini-Atlas of the Brain and a full Glossary of technical terms and their definitions. - Richly illustrated with hundreds of carefully selected color graphics to enhance understanding.
II. Sensation, Perception & Attention: John Serences (Volume Editor) (Topics covered include taste; visual object recognition; touch; depth perception; motor control; perceptual learning; the interface theory of perception; vestibular, proprioceptive, and haptic contributions to spatial orientation; olfaction; audition; time perception; attention; perception and interactive technology; music perception; multisensory integration; motion perception; vision; perceptual rhythms; perceptual organization; color vision; perception for action; visual search; visual cognition/working memory.)
Covering basic theory, new research, and intersections with adjacent fields, this is the first comprehensive reference work on cognitive control – our ability to use internal goals to guide thought and behavior. Draws together expert perspectives from a range of disciplines, including cognitive psychology, neuropsychology, neuroscience, cognitive science, and neurology Covers behavioral phenomena of cognitive control, neuroanatomical and computational models of frontal lobe function, and the interface between cognitive control and other mental processes Explores the ways in which cognitive control research can inform and enhance our understanding of brain development and neurological and psychiatric conditions