Steel Plate Shear Walls with Gravity Load: Theory and Design

Steel Plate Shear Walls with Gravity Load: Theory and Design

Author: Yang Lv

Publisher: Springer Nature

Published: 2022-02-10

Total Pages: 198

ISBN-13: 9811686947

DOWNLOAD EBOOK

This book is written by subject experts based on the recent research results in steel plate shear walls considering the gravity load effect. It establishes a vertical stress distribution of the walls under compression and in-plane bending load and an inclination angle of the tensile field strip. The stress throughout the inclined tensile strip, as we consider the effect of the vertical stress distribution, is determined using the von Mises yield criterion. The shear strength is calculated by integrating the shear stress along the width. The proposed theoretical model is verified by tests and numerical simulations. Researchers, scientists and engineers in the field of structural engineering can benefit from the book. As such, this book provides valuable knowledge, useful methods, and practical algorithms that can be considered in practical design of building structures adopting a steel shear wall system.


Design of Steel Structures

Design of Steel Structures

Author: Elias G. Abu-Saba

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 404

ISBN-13: 1461520797

DOWNLOAD EBOOK

This book is intended for classroom teaching in architectural and civil engineering at the graduate and undergraduate levels. Although it has been developed from lecture notes given in structural steel design, it can be useful to practicing engineers. Many of the examples presented in this book are drawn from the field of design of structures. Design of Steel Structures can be used for one or two semesters of three hours each on the undergraduate level. For a two-semester curriculum, Chapters 1 through 8 can be used during the first semester. Heavy emphasis should be placed on Chapters 1 through 5, giving the student a brief exposure to the consideration of wind and earthquakes in the design of buildings. With the new federal requirements vis a vis wind and earthquake hazards, it is beneficial to the student to have some under standing of the underlying concepts in this field. In addition to the class lectures, the instructor should require the student to submit a term project that includes the complete structural design of a multi-story building using standard design procedures as specified by AISC Specifications. Thus, the use of the AISC Steel Construction Manual is a must in teaching this course. In the second semester, Chapters 9 through 13 should be covered. At the undergraduate level, Chapters 11 through 13 should be used on a limited basis, leaving the student more time to concentrate on composite construction and built-up girders.


Smart Technologies for Energy, Environment and Sustainable Development, Vol 1

Smart Technologies for Energy, Environment and Sustainable Development, Vol 1

Author: Mohan Lal Kolhe

Publisher: Springer Nature

Published: 2022-02-25

Total Pages: 973

ISBN-13: 9811668752

DOWNLOAD EBOOK

This book contains select proceedings of the International Conference on Smart Technologies for Energy, Environment, and Sustainable Development (ICSTEESD 2020). The book is broadly divided into the themes of energy, environment, and sustainable development; and discusses the significance and solicitations of intelligent technologies in the domain of energy and environmental systems engineering. Topics covered in this book include sustainable energy systems including renewable technologies, energy efficiency, techno-economics of energy system and policies, integrated energy system planning, environmental management, energy efficient buildings and communities, sustainable transportation, smart manufacturing processes, etc. The book will be a valuable reference for young researchers, professionals, and policy makers working in the areas of energy, environment and sustainable development.


Ultimate Limit State Analysis and Design of Plated Structures

Ultimate Limit State Analysis and Design of Plated Structures

Author: Jeom Kee Paik

Publisher: John Wiley & Sons

Published: 2018-03-02

Total Pages: 971

ISBN-13: 1119367786

DOWNLOAD EBOOK

Reviews and describes both the fundamental and practical design procedures for the ultimate limit state design of ductile steel plated structures The new edition of this well-established reference reviews and describes both fundamentals and practical design procedures for steel plated structures. The derivation of the basic mathematical expressions is presented together with a thorough discussion of the assumptions and the validity of the underlying expressions and solution methods. Furthermore, this book is also an easily accessed design tool, which facilitates learning by applying the concepts of the limit states for practice using a set of computer programs, which can be downloaded. Ultimate Limit State Design of Steel Plated Structures provides expert guidance on mechanical model test results as well as nonlinear finite element solutions, sophisticated design methodologies useful for practitioners in industries or research institutions, and selected methods for accurate and efficient analyses of nonlinear behavior of steel plated structures both up to and after the ultimate strength is reached. Covers recent advances and developments in the field Includes new topics on constitutive equations of steels, test database associated with low/elevated temperature, and strain rates Includes a new chapter on a semi-analytical method Supported by a companion website with illustrative example data sheets Provides results for existing mechanical model tests Offers a thorough discussion of assumptions and the validity of underlying expressions and solution methods Designed as both a textbook and a handy reference, Ultimate Limit State Design of Steel Plated Structures, Second Edition is well suited to teachers and university students who are approaching the limit state design technology of steel plated structures for the first time. It also meets the needs of structural designers or researchers who are involved in civil, marine, and mechanical engineering as well as offshore engineering and naval architecture.


Resilient Structures and Infrastructure

Resilient Structures and Infrastructure

Author: Ehsan Noroozinejad Farsangi

Publisher: Springer

Published: 2019-05-03

Total Pages: 496

ISBN-13: 9811374465

DOWNLOAD EBOOK

This book discusses resilience in terms of structures’ and infrastructures’ responses to extreme loading conditions. These include static and dynamic loads such as those generated by blasts, terrorist attacks, seismic events, impact loadings, progressive collapse, floods and wind. In the last decade, the concept of resilience and resilient-based structures has increasingly gained in interest among engineers and scientists. Resilience describes a given structure’s ability to withstand sudden shocks. In other words, it can be measured by the magnitude of shock that a system can tolerate. This book offers a valuable resource for the development of new engineering practices, codes and regulations, public policy, and investigation reports on resilience, and provides broad and integrated coverage of the effects of dynamic loadings, and of the modeling techniques used to compute the structural response to these loadings.


Reinforced Concrete Structures

Reinforced Concrete Structures

Author: Robert Park

Publisher: John Wiley & Sons

Published: 1991-01-16

Total Pages: 794

ISBN-13: 9780471659174

DOWNLOAD EBOOK

Sets out basic theory for the behavior of reinforced concrete structural elements and structures in considerable depth. Emphasizes behavior at the ultimate load, and, in particular, aspects of the seismic design of reinforced concrete structures. Based on American practice, but also examines European practice.


Quantification of Building Seismic Performance Factors

Quantification of Building Seismic Performance Factors

Author:

Publisher:

Published: 2009

Total Pages: 424

ISBN-13:

DOWNLOAD EBOOK

This report describes a recommended methodology for reliably quantifying building system performance and response parameters for use in seismic design. The recommended methodology (referred to herein as the Methodology) provides a rational basis for establishing global seismic performance factors (SPFs), including the response modification coefficient (R factor), the system overstrength factor, and deflection amplification factor (Cd), of new seismic-force-resisting systems proposed for inclusion in model building codes. The purpose of this Methodology is to provide a rational basis for determining building seismic performance factors that, when properly implemented in the seismic design process, will result in equivalent safety against collapse in an earthquake, comparable to the inherent safety against collapse intended by current seismic codes, for buildings with different seismic-force-resisting systems.