This classic manual on structural steel design provides a major source of reference for structural engineers and fabricators working with the leading construction material. Based fully on the concepts of limit state design, the manual has been revised to take account of the 2000 revisions to BS 5950. It also looks at new developments in structural steel, environmental issues and outlines the main requirements of the Eurocode on structural steel.
This classic manual for structural steelwork design was first published in 1956. Since then, it has sold many thousands of copies worldwide. The fifth edition is the first major revision for 20 years and is the first edition to be fully based on limit state design, now used as the primary design method, and on the UK code of practice, BS 5950. It provides, in a single volume, all you need to know about structural steel design.
In 2010 the then current European national standards for building and construction were replaced by the EN Eurocodes, a set of pan-European model building codes developed by the European Committee for Standardization. The Eurocodes are a series of 10 European Standards (EN 1990 – EN 1999) that provide a common approach for the design of buildings, other civil engineering works and construction products. The design standards embodied in these Eurocodes will be used for all European public works and are set to become the de-facto standard for the private sector in Europe, with probable adoption in many other countries. This classic manual on structural steelwork design was first published in 1955, since when it has sold many tens of thousands of copies worldwide. For the seventh edition of the Steel Designers' Manual all chapters have been comprehensively reviewed, revised to ensure they reflect current approaches and best practice, and brought in to compliance with EN 1993: Design of Steel Structures (the so-called Eurocode 3).
In 2010 the then current European national standards for building and construction were replaced by the EN Eurocodes, a set of pan-European model building codes developed by the European Committee for Standardization. The Eurocodes are a series of 10 European Standards (EN 1990 – EN 1999) that provide a common approach for the design of buildings, other civil engineering works and construction products. The design standards embodied in these Eurocodes will be used for all European public works and are set to become the de-facto standard for the private sector in Europe, with probable adoption in many other countries. This classic manual on structural steelwork design was first published in 1955, since when it has sold many tens of thousands of copies worldwide. For the seventh edition of the Steel Designers' Manual all chapters have been comprehensively reviewed, revised to ensure they reflect current approaches and best practice, and brought in to compliance with EN 1993: Design of Steel Structures (the so-called Eurocode 3).
This book is intended for classroom teaching in architectural and civil engineering at the graduate and undergraduate levels. Although it has been developed from lecture notes given in structural steel design, it can be useful to practicing engineers. Many of the examples presented in this book are drawn from the field of design of structures. Design of Steel Structures can be used for one or two semesters of three hours each on the undergraduate level. For a two-semester curriculum, Chapters 1 through 8 can be used during the first semester. Heavy emphasis should be placed on Chapters 1 through 5, giving the student a brief exposure to the consideration of wind and earthquakes in the design of buildings. With the new federal requirements vis a vis wind and earthquake hazards, it is beneficial to the student to have some under standing of the underlying concepts in this field. In addition to the class lectures, the instructor should require the student to submit a term project that includes the complete structural design of a multi-story building using standard design procedures as specified by AISC Specifications. Thus, the use of the AISC Steel Construction Manual is a must in teaching this course. In the second semester, Chapters 9 through 13 should be covered. At the undergraduate level, Chapters 11 through 13 should be used on a limited basis, leaving the student more time to concentrate on composite construction and built-up girders.
This text aims to develop an understanding of Limit State Design as applied to structural steelwork. The use of the relevant codes of practice, in particular BS 5950: Part 1, is explained and demonstrated in numerous worked examples and illustrations. The treatment is both extensive and comprehensive, including a selection of design examples which are presented in a format typical of that used in a design office in order to encourage students to adopt a methodical and rational approach in preparing structural calculations.
Practical guide to structural stability theory for the design of safe steel structures Not only does this book provide readers with a solid foundation in structural stability theory, it also offers them a practical, working knowledge of how this theory translates into design specifications for safe steel structures. Structural Stability of Steel features detailed discussions of the elastic and inelastic stability of steel columns, beams, beam-columns, and frames alongside numerous worked examples. For each type of structural member or system, the authors set forth recommended design rules with clear explanations of how they were derived. Following an introduction to the principles of stability theory, the book covers: * Stability of axially loaded planar elastic systems * Tangent-modulus, reduced-modulus, and maximum strength theories * Elastic and inelastic stability limits of planar beam-columns * Elastic and inelastic instability of planar frames * Out-of-plane, lateral-torsional buckling of beams, columns, and beam-columns The final two chapters focus on the application of stability theory to the practical design of steel structures, with special emphasis on examples based on the 2005 Specification for Structural Steel Buildings of the American Institute of Steel Construction. Problem sets at the end of each chapter enable readers to put their newfound knowledge into practice by solving actual instability problems. With its clear logical progression from theory to design implementation, this book is an ideal textbook for upper-level undergraduates and graduate students in structural engineering. Practicing engineers should also turn to this book for expert assistance in investigating and solving a myriad of stability problems.
This book is the Proceedings of a State-of-the-Art Workshop on Connenctions and the Behaviour, Strength and Design of Steel Structures held at Laboratoire de Mecanique et Technologie, Ecole Normale, Cachan France from 25th to 27th May 1987. It contains the papers presented at the above proceedings and is split into eight main sections covering: Local Analysis of Joints, Mathematical Models, Classification, Frame Analysis, Frame Stability and Simplified Methods, Design Requirements, Data Base Organisation, Research and Development Needs. With papers from 50 international contributors this text will provide essential reading for all those involved with steel structures.
Surveys the leading methods for connecting structural steel components, covering state-of-the-art techniques and materials, and includes new information on welding and connections. Hundreds of detailed examples, photographs, and illustrations are found throughout this handbook. --from publisher description.