Many of the earliest books, particularly those dating back to the 1900s and before, are now extremely scarce and increasingly expensive. We are republishing these classic works in affordable, high quality, modern editions, using the original text and artwork.
THE LATEST STEAM TURBINE BLADE DESIGN AND ANALYTICAL TECHNIQUES Blade Design and Analysis for Steam Turbines provides a concise reference for practicing engineers involved in the design, specification, and evaluation of industrial steam turbines, particularly critical process compressor drivers. A unified view of blade design concepts and techniques is presented. The book covers advances in modal analysis, fatigue and creep analysis, and aerodynamic theories, along with an overview of commonly used materials and manufacturing processes. This authoritative guide will aid in the design of powerful, efficient, and reliable turbines. COVERAGE INCLUDES: Performance fundamentals and blade loading determination Turbine blade construction, materials, and manufacture System of stress and damage mechanisms Fundamentals of vibration Damping concepts applicable to turbine blades Bladed disk systems Reliability evaluation for blade design Blade life assessment aspects Estimation of risk
When installed and operated properly, general purpose steam turbines are reliable and tend to be forgotten, i.e., out of sound and out of mind. But, they can be sleeping giants that can result in major headaches if ignored. Three real steam turbine undesirable consequences that immediately come to mind are: Injury and secondary damage due to an overspeed failure. An overspeed failure on a big steam or gas turbine is one of the most frightening of industrial accidents. The high cost of an extensive overhaul due to an undetected component failure. A major steam turbine repair can cost ten or more times that of a garden variety centrifugal pump repair. Costly production loses due an extended outage if the driven pump or compressor train is unspared. The value of lost production can quickly exceed repair costs. A major goal of this book is to provide readers with detailed operating procedure aimed at reducing these risks to minimal levels. Start-ups are complicated by the fact that operators must deal with numerous start-up scenarios, such as: Commissioning a newly installed steam turbine Starting ups after a major steam turbine repair Starting up a proven steam turbine after an outage Overspeed trip testing It is not enough to simply have a set of procedures in the control room for reference. To be effective, operating procedures must be clearly written down, taught, and practiced—until they become habit.
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attention to types of turbines, construction of steam turbine cylinders and rotors, and gas and hydraulic turbines. The following chapters look at turbine auxiliary systems such as glands and sealing systems, lubrication systems, governors and governing gear; feed water heating systems, feed heater arrangement, and regenerative cycle calculations; and design and construction of condensers. The final chapter is devoted to miscellaneous station services and pipework in power plants and discusses water services, compressed air services, heating and ventilation, and miscellaneous cranes and lifting tackle. This volume will be of interest to power station engineers.
The Gas Turbine Engineering Handbook has been the standard for engineers involved in the design, selection, and operation of gas turbines. This revision includes new case histories, the latest techniques, and new designs to comply with recently passed legislation. By keeping the book up to date with new, emerging topics, Boyce ensures that this book will remain the standard and most widely used book in this field. The new Third Edition of the Gas Turbine Engineering Hand Book updates the book to cover the new generation of Advanced gas Turbines. It examines the benefit and some of the major problems that have been encountered by these new turbines. The book keeps abreast of the environmental changes and the industries answer to these new regulations. A new chapter on case histories has been added to enable the engineer in the field to keep abreast of problems that are being encountered and the solutions that have resulted in solving them. - Comprehensive treatment of Gas Turbines from Design to Operation and Maintenance. In depth treatment of Compressors with emphasis on surge, rotating stall, and choke; Combustors with emphasis on Dry Low NOx Combustors; and Turbines with emphasis on Metallurgy and new cooling schemes. An excellent introductory book for the student and field engineers - A special maintenance section dealing with the advanced gas turbines, and special diagnostic charts have been provided that will enable the reader to troubleshoot problems he encounters in the field - The third edition consists of many Case Histories of Gas Turbine problems. This should enable the field engineer to avoid some of these same generic problems