Statistics and Machine Learning Methods for EHR Data

Statistics and Machine Learning Methods for EHR Data

Author: Hulin Wu

Publisher: CRC Press

Published: 2020-12-09

Total Pages: 329

ISBN-13: 1000260941

DOWNLOAD EBOOK

The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data. Key Features: Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains. Documents the detailed experience on EHR data extraction, cleaning and preparation Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data. Considers the complete cycle of EHR data analysis. The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.


Federated Learning

Federated Learning

Author: Qiang Yang

Publisher: Springer Nature

Published: 2020-11-25

Total Pages: 291

ISBN-13: 3030630765

DOWNLOAD EBOOK

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”


Secondary Analysis of Electronic Health Records

Secondary Analysis of Electronic Health Records

Author: MIT Critical Data

Publisher: Springer

Published: 2016-09-09

Total Pages: 435

ISBN-13: 3319437429

DOWNLOAD EBOOK

This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.


Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare

Author: Adam Bohr

Publisher: Academic Press

Published: 2020-06-21

Total Pages: 385

ISBN-13: 0128184396

DOWNLOAD EBOOK

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data


Bio-inspired Neurocomputing

Bio-inspired Neurocomputing

Author: Akash Kumar Bhoi

Publisher: Springer Nature

Published: 2020-07-21

Total Pages: 427

ISBN-13: 9811554951

DOWNLOAD EBOOK

This book covers the latest technological advances in neuro-computational intelligence in biological processes where the primary focus is on biologically inspired neuro-computational techniques. The theoretical and practical aspects of biomedical neural computing, brain-inspired computing, bio-computational models, artificial intelligence (AI) and machine learning (ML) approaches in biomedical data analytics are covered along with their qualitative and quantitative features. The contents cover numerous computational applications, methodologies and emerging challenges in the field of bio-soft computing and bio-signal processing. The authors have taken meticulous care in describing the fundamental concepts, identifying the research gap and highlighting the problems with the strategical computational approaches to address the ongoing challenges in bio-inspired models and algorithms. Given the range of topics covered, this book can be a valuable resource for students, researchers as well as practitioners interested in the rapidly evolving field of neurocomputing and biomedical data analytics.


Leveraging Data Science for Global Health

Leveraging Data Science for Global Health

Author: Leo Anthony Celi

Publisher: Springer Nature

Published: 2020-07-31

Total Pages: 471

ISBN-13: 3030479943

DOWNLOAD EBOOK

This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.


Registries for Evaluating Patient Outcomes

Registries for Evaluating Patient Outcomes

Author: Agency for Healthcare Research and Quality/AHRQ

Publisher: Government Printing Office

Published: 2014-04-01

Total Pages: 385

ISBN-13: 1587634333

DOWNLOAD EBOOK

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.


Methods in Biomedical Informatics

Methods in Biomedical Informatics

Author: Indra Neil Sarkar

Publisher: Academic Press

Published: 2013-09-03

Total Pages: 589

ISBN-13: 0124016847

DOWNLOAD EBOOK

Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. - Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications - Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. - Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.


Human-Machine Interface

Human-Machine Interface

Author: Rishabha Malviya

Publisher: John Wiley & Sons

Published: 2023-10-16

Total Pages: 370

ISBN-13: 1394200323

DOWNLOAD EBOOK

HUMAN-MACHINE INTERFACE The book contains the latest advances in healthcare and presents them in the frame of the Human-Machine Interface (HMI). The Human-Machine Interface (HMI) industry has witnessed the evolution from a simple push button to a modern touch-screen display. HMI is a user interface that allows humans to operate controllers for machines, systems, or instruments. Most medical procedures are improved by HMI systems, from calling an ambulance to ensuring that a patient receives adequate treatment on time. This book describes the scenario of biomedical technologies in the context of the advanced HMI, with a focus on direct brain-computer connection. The book describes several HMI tools and related techniques for analyzing, creating, controlling, and upgrading healthcare delivery systems, and provides details regarding how advancements in technology, particularly HMI, ensure ethical and fair use in patient care. Audience The target audience for this book is medical personnel and policymakers in healthcare and pharmaceutical professionals, as well as engineers and researchers in computer science and artificial intelligence.


Computational Analysis and Deep Learning for Medical Care

Computational Analysis and Deep Learning for Medical Care

Author: Amit Kumar Tyagi

Publisher: John Wiley & Sons

Published: 2021-08-24

Total Pages: 532

ISBN-13: 1119785723

DOWNLOAD EBOOK

The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.