Nuclear Science Abstracts

Nuclear Science Abstracts

Author:

Publisher:

Published: 1975

Total Pages: 632

ISBN-13:

DOWNLOAD EBOOK

NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.


Random Matrices and the Statistical Theory of Energy Levels

Random Matrices and the Statistical Theory of Energy Levels

Author: M. L. Mehta

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 270

ISBN-13: 1483258564

DOWNLOAD EBOOK

Random Matrices and the Statistical Theory of Energy Levels focuses on the processes, methodologies, calculations, and approaches involved in random matrices and the statistical theory of energy levels, including ensembles and density and correlation functions. The publication first elaborates on the joint probability density function for the matrix elements and eigenvalues, including the Gaussian unitary, symplectic, and orthogonal ensembles and time-reversal invariance. The text then examines the Gaussian ensembles, as well as the asymptotic formula for the level density and partition function. The manuscript elaborates on the Brownian motion model, circuit ensembles, correlation functions, thermodynamics, and spacing distribution of circular ensembles. Topics include continuum model for the spacing distribution, thermodynamic quantities, joint probability density function for the eigenvalues, stationary and nonstationary ensembles, and ensemble averages. The publication then examines the joint probability density functions for two nearby spacings and invariance hypothesis and matrix element correlations. The text is a valuable source of data for researchers interested in random matrices and the statistical theory of energy levels.


Random Matrices

Random Matrices

Author: Madan Lal Mehta

Publisher: Elsevier

Published: 2004-10-06

Total Pages: 707

ISBN-13: 008047411X

DOWNLOAD EBOOK

Random Matrices gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. - Presentation of many new results in one place for the first time - First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals - Fredholm determinants and Painlevé equations - The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities - Fredholm determinants and inverse scattering theory - Probability densities of random determinants


Many-body Problem, The: An Encyclopedia Of Exactly Solved Models In One Dimension (3rd Printing With Revisions And Corrections)

Many-body Problem, The: An Encyclopedia Of Exactly Solved Models In One Dimension (3rd Printing With Revisions And Corrections)

Author: Daniel C Mattis

Publisher: World Scientific

Published: 1993-03-15

Total Pages: 992

ISBN-13: 9814505579

DOWNLOAD EBOOK

This book differs from its predecessor, Lieb & Mattis Mathematical Physics in One Dimension, in a number of important ways. Classic discoveries which once had to be omitted owing to lack of space — such as the seminal paper by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain, or Bethe's original paper on the Bethe ansatz — can now be incorporated. Many applications which did not even exist in 1966 (some of which were originally spawned by the publication of Lieb & Mattis) are newly included. Among these, this new book contains critical surveys of a number of important developments: the exact solution of the Hubbard model, the concept of spinons, the Haldane gap in magnetic spin-one chains, bosonization and fermionization, solitions and the approach to thermodynamic equilibrium, quantum statistical mechanics, localization of normal modes and eigenstates in disordered chains, and a number of other contemporary concerns.


Asymptotic Combinatorics with Application to Mathematical Physics

Asymptotic Combinatorics with Application to Mathematical Physics

Author: V.A. Malyshev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 335

ISBN-13: 9401005753

DOWNLOAD EBOOK

New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.