Nonequilibrium Statistical Physics

Nonequilibrium Statistical Physics

Author: Roberto Livi

Publisher: Cambridge University Press

Published: 2017-10-05

Total Pages: 439

ISBN-13: 1108364047

DOWNLOAD EBOOK

Statistical mechanics has been proven to be successful at describing physical systems at thermodynamic equilibrium. Since most natural phenomena occur in nonequilibrium conditions, the present challenge is to find suitable physical approaches for such conditions: this book provides a pedagogical pathway that explores various perspectives. The use of clear language, and explanatory figures and diagrams to describe models, simulations and experimental findings makes the book a valuable resource for undergraduate and graduate students, and also for lecturers organizing teaching at varying levels of experience in the field. Written in three parts, it covers basic and traditional concepts of nonequilibrium physics, modern aspects concerning nonequilibrium phase transitions, and application-orientated topics from a modern perspective. A broad range of topics is covered, including Langevin equations, Levy processes, directed percolation, kinetic roughening and pattern formation.


Statistical Thermodynamics of Nonequilibrium Processes

Statistical Thermodynamics of Nonequilibrium Processes

Author: Joel Keizer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 517

ISBN-13: 1461210542

DOWNLOAD EBOOK

The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.


Statistical Physics

Statistical Physics

Author: Ian Ford

Publisher: John Wiley & Sons

Published: 2013-03-27

Total Pages: 290

ISBN-13: 1118597494

DOWNLOAD EBOOK

This undergraduate textbook provides a statistical mechanical foundation to the classical laws of thermodynamics via a comprehensive treatment of the basics of classical thermodynamics, equilibrium statistical mechanics, irreversible thermodynamics, and the statistical mechanics of non-equilibrium phenomena. This timely book has a unique focus on the concept of entropy, which is studied starting from the well-known ideal gas law, employing various thermodynamic processes, example systems and interpretations to expose its role in the second law of thermodynamics. This modern treatment of statistical physics includes studies of neutron stars, superconductivity and the recently developed fluctuation theorems. It also presents figures and problems in a clear and concise way, aiding the student’s understanding.


Nonequilibrium Statistical Physics

Nonequilibrium Statistical Physics

Author: Roberto Livi

Publisher: Cambridge University Press

Published: 2017-10-05

Total Pages: 439

ISBN-13: 1107049547

DOWNLOAD EBOOK

A comprehensive and pedagogical text on nonequilibrium statistical physics, covering topics from random walks to pattern formation.


Kinetic Theory

Kinetic Theory

Author: S. G. Brush

Publisher: Elsevier

Published: 2016-10-27

Total Pages: 262

ISBN-13: 1483155935

DOWNLOAD EBOOK

Kinetic Theory, Volume 2: Irreversible Processes compiles the fundamental papers on the kinetic theory of gases. This book comprises the two papers by Maxwell and Boltzmann in which the basic equations for transport processes in gases are formulated, as well as the first derivation of Boltzmann's "H-theorem and problem of irreversibility. Other topics include the dynamical theory of gases; kinetic theory of the dissipation of energy; three-body problem and the equations of dynamics; theorem of dynamics and the mechanical theory of heat; and mechanical explanation of irreversible processes. This volume is beneficial to physics students in the advanced undergraduate or postgraduate level.


Non-Equilibrium Statistical Mechanics

Non-Equilibrium Statistical Mechanics

Author: Ilya Prigogine

Publisher: Courier Dover Publications

Published: 2017-03-17

Total Pages: 337

ISBN-13: 0486815552

DOWNLOAD EBOOK

Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.


University Physics

University Physics

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves


E.T. Jaynes

E.T. Jaynes

Author: Edwin T. Jaynes

Publisher: Springer Science & Business Media

Published: 1989-04-30

Total Pages: 468

ISBN-13: 9780792302131

DOWNLOAD EBOOK

The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.


An Introduction to Statistical Mechanics and Thermodynamics

An Introduction to Statistical Mechanics and Thermodynamics

Author: Robert H. Swendsen

Publisher: OUP Oxford

Published: 2012-03-01

Total Pages: 422

ISBN-13: 0191627461

DOWNLOAD EBOOK

This text presents the two complementary aspects of thermal physics as an integrated theory of the properties of matter. Conceptual understanding is promoted by thorough development of basic concepts. In contrast to many texts, statistical mechanics, including discussion of the required probability theory, is presented first. This provides a statistical foundation for the concept of entropy, which is central to thermal physics. A unique feature of the book is the development of entropy based on Boltzmann's 1877 definition; this avoids contradictions or ad hoc corrections found in other texts. Detailed fundamentals provide a natural grounding for advanced topics, such as black-body radiation and quantum gases. An extensive set of problems (solutions are available for lecturers through the OUP website), many including explicit computations, advance the core content by probing essential concepts. The text is designed for a two-semester undergraduate course but can be adapted for one-semester courses emphasizing either aspect of thermal physics. It is also suitable for graduate study.


Problems on Statistical Mechanics

Problems on Statistical Mechanics

Author: D.A.R Dalvit

Publisher: CRC Press

Published: 1999-01-01

Total Pages: 784

ISBN-13: 9781420050875

DOWNLOAD EBOOK

A thorough understanding of statistical mechanics depends strongly on the insights and manipulative skills that are acquired through the solving of problems. Problems on Statistical Mechanics provides over 120 problems with model solutions, illustrating both basic principles and applications that range from solid-state physics to cosmology. An introductory chapter provides a summary of the basic concepts and results that are needed to tackle the problems, and also serves to establish the notation that is used throughout the book. The problems themselves occupy five chapters, progressing from the simpler aspects of thermodynamics and equilibrium statistical ensembles to the more challenging ideas associated with strongly interacting systems and nonequilibrium processes. Comprehensive solutions to all of the problems are designed to illustrate efficient and elegant problem-solving techniques. Where appropriate, the authors incorporate extended discussions of the points of principle that arise in the course of the solutions. The appendix provides useful mathematical formulae.