Clearly illustrates how established techniques can be easily understood and used with a sample size that is smaller than normally envisioned. Provides solutions to complex industrial problems by demonstrating how to define the problem and evaluate it statistically with the aim of accelerating product design testing that requires fewer samples and offers more information with less test effort. Along with examples, it contains detailed additional material presented in tabular form for both easy reference and cross-reference.
A guide to achieving business successes through statistical methods Statistical methods are a key ingredient in providing data-based guidance to research and development as well as to manufacturing. Understanding the concepts and specific steps involved in each statistical method is critical for achieving consistent and on-target performance. Written by a recognized educator in the field, Statistical Methods for Six Sigma: In R&D and Manufacturing is specifically geared to engineers, scientists, technical managers, and other technical professionals in industry. Emphasizing practical learning, applications, and performance improvement, Dr. Joglekar?s text shows today?s industry professionals how to: Summarize and interpret data to make decisions Determine the amount of data to collect Compare product and process designs Build equations relating inputs and outputs Establish specifications and validate processes Reduce risk and cost-of-process control Quantify and reduce economic loss due to variability Estimate process capability and plan process improvements Identify key causes and their contributions to variability Analyze and improve measurement systems This long-awaited guide for students and professionals in research, development, quality, and manufacturing does not presume any prior knowledge of statistics. It covers a large number of useful statistical methods compactly, in a language and depth necessary to make successful applications. Statistical methods in this book include: variance components analysis, variance transmission analysis, risk-based control charts, capability and performance indices, quality planning, regression analysis, comparative experiments, descriptive statistics, sample size determination, confidence intervals, tolerance intervals, and measurement systems analysis. The book also contains a wealth of case studies and examples, and features a unique test to evaluate the reader?s understanding of the subject.
HELPS YOU FULLY LEVERAGE STATISTICAL METHODS TO IMPROVE INDUSTRIAL PERFORMANCE Industrial Statistics guides you through ten practical statistical methods that have broad applications in many different industries for enhancing research, product design, process design, validation, manufacturing, and continuous improvement. As you progress through the book, you'll discover some valuable methods that are currently underutilized in industry as well as other methods that are often not used correctly. With twenty-five years of teaching and consulting experience, author Anand Joglekar has helped a diverse group of companies reduce costs, accelerate product development, and improve operations through the effective implementation of statistical methods. Based on his experience working with both clients and students, Dr. Joglekar focuses on real-world problem-solving. For each statistical method, the book: Presents the most important underlying concepts clearly and succinctly Minimizes mathematical details that can be delegated to a computer Illustrates applications with numerous practical examples Offers a "Questions to Ask" section at the end of each chapter to assist you with implementation The last chapter consists of 100 practical questions followed by their answers. If you're already familiar with statistical methods, you may want to take the test first to determine which methods to focus on. By helping readers fully leverage statistical methods to improve industrial performance, this book becomes an ideal reference and self-study guide for scientists, engineers, managers and other technical professionals across a wide range of industries. In addition, its clear explanations and examples make it highly suited as a textbook for undergraduate and graduate courses in statistics.
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.
"This book is about the use of modern statistical methods for quality control and improvement. It provides comprehensive coverage of the subject from basic principles to state-of-the-art concepts. and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of situations. Although statistical techniques are emphasized. throughout, the book has a strong engineering and management orientation. Extensive knowledge. of statistics is not a prerequisite for using this book. Readers whose background includes a basic course in statistical methods will find much of the material in this book easily accessible"--
This book examines statistical techniques that are critically important to Chemistry, Manufacturing, and Control (CMC) activities. Statistical methods are presented with a focus on applications unique to the CMC in the pharmaceutical industry. The target audience consists of statisticians and other scientists who are responsible for performing statistical analyses within a CMC environment. Basic statistical concepts are addressed in Chapter 2 followed by applications to specific topics related to development and manufacturing. The mathematical level assumes an elementary understanding of statistical methods. The ability to use Excel or statistical packages such as Minitab, JMP, SAS, or R will provide more value to the reader. The motivation for this book came from an American Association of Pharmaceutical Scientists (AAPS) short course on statistical methods applied to CMC applications presented by four of the authors. One of the course participants asked us for a good reference book, and the only book recommended was written over 20 years ago by Chow and Liu (1995). We agreed that a more recent book would serve a need in our industry. Since we began this project, an edited book has been published on the same topic by Zhang (2016). The chapters in Zhang discuss statistical methods for CMC as well as drug discovery and nonclinical development. We believe our book complements Zhang by providing more detailed statistical analyses and examples.
This book presents models and statistical methods for the analysis of recurrent event data. The authors provide broad, detailed coverage of the major approaches to analysis, while emphasizing the modeling assumptions that they are based on. More general intensity-based models are also considered, as well as simpler models that focus on rate or mean functions. Parametric, nonparametric and semiparametric methodologies are all covered, with procedures for estimation, testing and model checking.
This undergraduate statistical quality assurance textbook clearly shows with real projects, cases and data sets how statistical quality control tools are used in practice. Among the topics covered is a practical evaluation of measurement effectiveness for both continuous and discrete data. Gauge Reproducibility and Repeatability methodology (including confidence intervals for Repeatability, Reproducibility and the Gauge Capability Ratio) is thoroughly developed. Process capability indices and corresponding confidence intervals are also explained. In addition to process monitoring techniques, experimental design and analysis for process improvement are carefully presented. Factorial and Fractional Factorial arrangements of treatments and Response Surface methods are covered. Integrated throughout the book are rich sets of examples and problems that help readers gain a better understanding of where and how to apply statistical quality control tools. These large and realistic problem sets in combination with the streamlined approach of the text and extensive supporting material facilitate reader understanding. Second Edition Improvements Extensive coverage of measurement quality evaluation (in addition to ANOVA Gauge R&R methodologies) New end-of-section exercises and revised-end-of-chapter exercises Two full sets of slides, one with audio to assist student preparation outside-of-class and another appropriate for professors’ lectures Substantial supporting material Supporting Material Seven R programs that support variables and attributes control chart construction and analyses, Gauge R&R methods, analyses of Fractional Factorial studies, Propagation of Error analyses and Response Surface analyses Documentation for the R programs Excel data files associated with the end-of-chapter problem sets, most from real engineering settings
Praise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available." —Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.