Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.
This third edition of Statistical Physics of Complex Systems has been expanded to provide more examples of applications of concepts and methods from statistical physics to the modeling of complex systems. These include avalanche dynamics in materials, models of social agents like road traffic or wealth repartition, the real space aspects of biological evolution dynamics, propagation phenomena on complex networks, formal neural networks and their connection to constraint satisfaction problems. This course-tested textbook provides graduate students and non-specialists with a basic understanding of the concepts and methods of statistical physics and demonstrates their wide range of applications to interdisciplinary topics in the field of complex system sciences, including selected aspects of theoretical modeling in biology and the social sciences. It covers topics such as non-conserved particles, evolutionary population dynamics, networks, properties of both individual and coupled simple dynamical systems, and convergence theorems, as well as short appendices that offer helpful hints on how to perform simple stochastic simulations in practice. The original spirit of the book is to remain accessible to a broad, non-specialized readership. The format is a set of concise, modular, and self-contained topical chapters, avoiding technicalities and jargon as much as possible, and complemented by a wealth of worked-out examples, so as to make this work useful as a self-study text or as textbook for short courses.
This is the Golden Age for Artificial Intelligence. The world is becoming increasingly automated and wired together. This also increases the opportunities for AI to help people and commerce. Almost every sub field of AI had now been used in substantial applications. Some of the fields highlighted in this publication are: CBR Technology; Model Based Systems; Data Mining and Natural Language Techniques. Not only does this publication show the activities, capabilities and accomplishments of the sub fields, it also focuses on what is happening across the field as a whole.
Understanding the mechanism of a socio-economic system requires more than an understanding of the individuals that comprise the system. It also requires understanding how individuals interact with each other, and how the agg- gated outcome can be more than the sum of individual behaviors. This book contains the papers fostering the formation of an active multi-disciplinary community on socio-economic systems with the exciting new ?elds of age- based modeling and econophysics. We especially intend to increase the awareness of researchers in many ?elds with sharing the common view many economic and social activities as collectives of a large-scale heterogeneous and interacting agents. Economists seek to understand not only how individuals behave but also how the interaction of many individuals leads to complex outcomes. Age- based modeling is a method for studying socio-economic systems exhibiting the following two properties: (1) the system is composed of interacting agents, and (2) the system exhibits emergent properties, that is, properties arising from the interactions of the agents that cannot be deduced simply by agg- gating the properties of the system’s components. When the interaction of the agents is contingent on past experience, and especially when the agents continually adapt to that experience, mathematical analysis is typically very limited in its ability to derive the outcome.
This volume sheds light on the current state of complex networks and nonlinear dynamics applied to the understanding of economic and social phenomena ranging from geographical economics to macroeconomics and finance, and its purpose is to give readers an overview of several interesting topics for research at an intermediate level. Three different and interdisciplinary, but complementary, aspects of networks are put together in a single piece, namely: (i) complex networks theory, (ii) applied network analysis to social and economic interrelations, and (iii) dynamical evolution of systems and networks. The volume includes contributions from excellent scholars in economics and social sciences as well as leading experts in the fields of complex networks and nonlinear dynamics.
This book gathers the peer-reviewed proceedings of the 14th Annual Meeting of the Bulgarian Section of the Society for Industrial and Applied Mathematics, BGSIAM'19, held in Sofia, Bulgaria. The general theme of BGSIAM'19 was industrial and applied mathematics with particular focus on mathematical physics, numerical analysis, high-performance computing, optimization and control, mathematical biology, stochastic modeling, machine learning, digitization and imaging, and advanced computing in environmental, biomedical, and engineering applications.
This collection of review articles is devoted to the modeling of ecological, epidemiological and evolutionary systems. Theoretical mathematical models are perhaps one of the most powerful approaches available for increasing our understanding of the complex population dynamics in these natural systems. Exciting new techniques are currently being developed to meet this challenge, such as generalized or structural modeling, adaptive dynamics or multiplicative processes. Many of these new techniques stem from the field of nonlinear dynamics and chaos theory, where even the simplest mathematical rule can generate a rich variety of dynamical behaviors that bear a strong analogy to biological populations.
This book demonstrates the usefulness of tools from statistical mechanics for biology. It includes the new tendencies in topics like membranes, vesicles, microtubules, molecular motors, DNA, protein folding, phase transitions in biological systems, evolution, population dynamics, neural systems and biological oscillators, with special emphasis on the importance of statistical mechanics in their development. The book addresses researchers and graduate students.
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
A network is a mathematical object consisting of a set of points that are connected to each other in some fashion by lines. It turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems, food webs or protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social and professional relationships such as friendship, sex partners, network of Hollywood actors, co-authorship networks and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development of theoretical models and tools to explore the various properties of these systems. The study of networks is broadly interdisciplinary and central developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology and the social sciences. This book brings together a collection of cutting-edge research in the field from a diverse array of researchers ranging from physicists to social scientists and presents them in a coherent fashion, highlighting the strong interconnections between the different areas. Topics included are social networks and social media, opinion and innovation diffusion, biological and health-related networks, language networks, as well as network theory, community detection, or growth models for Complex Networks.