Statistical Inference as Severe Testing

Statistical Inference as Severe Testing

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 503

ISBN-13: 1108563309

DOWNLOAD EBOOK

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.


Statistical Inference for Piecewise-deterministic Markov Processes

Statistical Inference for Piecewise-deterministic Markov Processes

Author: Romain Azais

Publisher: John Wiley & Sons

Published: 2018-07-31

Total Pages: 279

ISBN-13: 1119544033

DOWNLOAD EBOOK

Piecewise-deterministic Markov processes form a class of stochastic models with a sizeable scope of applications: biology, insurance, neuroscience, networks, finance... Such processes are defined by a deterministic motion punctuated by random jumps at random times, and offer simple yet challenging models to study. Nevertheless, the issue of statistical estimation of the parameters ruling the jump mechanism is far from trivial. Responding to new developments in the field as well as to current research interests and needs, Statistical inference for piecewise-deterministic Markov processes offers a detailed and comprehensive survey of state-of-the-art results. It covers a wide range of general processes as well as applied models. The present book also dwells on statistics in the context of Markov chains, since piecewise-deterministic Markov processes are characterized by an embedded Markov chain corresponding to the position of the process right after the jumps.


An Introduction to the Theory of Point Processes

An Introduction to the Theory of Point Processes

Author: D.J. Daley

Publisher: Springer Science & Business Media

Published: 2006-04-10

Total Pages: 487

ISBN-13: 0387215646

DOWNLOAD EBOOK

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.


Fractal-Based Point Processes

Fractal-Based Point Processes

Author: Steven Bradley Lowen

Publisher: John Wiley & Sons

Published: 2005-09-19

Total Pages: 628

ISBN-13: 0471754706

DOWNLOAD EBOOK

An integrated approach to fractals and point processes This publication provides a complete and integrated presentation of the fields of fractals and point processes, from definitions and measures to analysis and estimation. The authors skillfully demonstrate how fractal-based point processes, established as the intersection of these two fields, are tremendously useful for representing and describing a wide variety of diverse phenomena in the physical and biological sciences. Topics range from information-packet arrivals on a computer network to action-potential occurrences in a neural preparation. The authors begin with concrete and key examples of fractals and point processes, followed by an introduction to fractals and chaos. Point processes are defined, and a collection of characterizing measures are presented. With the concepts of fractals and point processes thoroughly explored, the authors move on to integrate the two fields of study. Mathematical formulations for several important fractal-based point-process families are provided, as well as an explanation of how various operations modify such processes. The authors also examine analysis and estimation techniques suitable for these processes. Finally, computer network traffic, an important application used to illustrate the various approaches and models set forth in earlier chapters, is discussed. Throughout the presentation, readers are exposed to a number of important applications that are examined with the aid of a set of point processes drawn from biological signals and computer network traffic. Problems are provided at the end of each chapter allowing readers to put their newfound knowledge into practice, and all solutions are provided in an appendix. An accompanying Web site features links to supplementary materials and tools to assist with data analysis and simulation. With its focus on applications and numerous solved problem sets, this is an excellent graduate-level text for courses in such diverse fields as statistics, physics, engineering, computer science, psychology, and neuroscience.


Statistics for Spatial Data

Statistics for Spatial Data

Author: Noel Cressie

Publisher: John Wiley & Sons

Published: 2015-03-18

Total Pages: 931

ISBN-13: 1119115183

DOWNLOAD EBOOK

The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.


Poisson Processes

Poisson Processes

Author: J. F. C. Kingman

Publisher: Clarendon Press

Published: 1992-12-17

Total Pages: 118

ISBN-13: 0191591246

DOWNLOAD EBOOK

In the theory of random processes there are two that are fundamental, and occur over and over again, often in surprising ways. There is a real sense in which the deepest results are concerned with their interplay. One, the Bachelier Wiener model of Brownian motion, has been the subject of many books. The other, the Poisson process, seems at first sight humbler and less worthy of study in its own right. Nearly every book mentions it, but most hurry past to more general point processes or Markov chains. This comparative neglect is ill judged, and stems from a lack of perception of the real importance of the Poisson process. This distortion partly comes about from a restriction to one dimension, while the theory becomes more natural in more general context. This book attempts to redress the balance. It records Kingman's fascination with the beauty and wide applicability of Poisson processes in one or more dimensions. The mathematical theory is powerful, and a few key results often produce surprising consequences.


Essential Statistical Inference

Essential Statistical Inference

Author: Dennis D. Boos

Publisher: Springer Science & Business Media

Published: 2013-02-06

Total Pages: 567

ISBN-13: 1461448182

DOWNLOAD EBOOK

​This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​


Foundations of Statistical Inference

Foundations of Statistical Inference

Author: Yoel Haitovsky

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 227

ISBN-13: 3642574106

DOWNLOAD EBOOK

This volume is a collection of papers presented at a conference held in Shoresh Holiday Resort near Jerusalem, Israel, in December 2000 organized by the Israeli Ministry of Science, Culture and Sport. The theme of the conference was "Foundation of Statistical Inference: Applications in the Medical and Social Sciences and in Industry and the Interface of Computer Sciences". The following is a quotation from the Program and Abstract booklet of the conference. "Over the past several decades, the field of statistics has seen tremendous growth and development in theory and methodology. At the same time, the advent of computers has facilitated the use of modern statistics in all branches of science, making statistics even more interdisciplinary than in the past; statistics, thus, has become strongly rooted in all empirical research in the medical, social, and engineering sciences. The abundance of computer programs and the variety of methods available to users brought to light the critical issues of choosing models and, given a data set, the methods most suitable for its analysis. Mathematical statisticians have devoted a great deal of effort to studying the appropriateness of models for various types of data, and defining the conditions under which a particular method work. " In 1985 an international conference with a similar title* was held in Is rael. It provided a platform for a formal debate between the two main schools of thought in Statistics, the Bayesian, and the Frequentists.