Statistical Decision Theory and Related Topics III

Statistical Decision Theory and Related Topics III

Author: Shanti S. Gupta

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 551

ISBN-13: 1483259552

DOWNLOAD EBOOK

Statistical Decision Theory and Related Topics III, Volume 2 is a collection of papers presented at the Third Purdue Symposium on Statistical Decision Theory and Related Topics, held at Purdue University in June 1981. The symposium brought together many prominent leaders and a number of younger researchers in statistical decision theory and related areas. This volume contains the research papers presented at the symposium and includes works on general decision theory, multiple decision theory, optimum experimental design, sequential and adaptive inference, Bayesian analysis, robustness, and large sample theory. These research areas have seen rapid developments since the preceding Purdue Symposium in 1976, developments reflected by the variety and depth of the works in this volume. Statisticians and mathematicians will find the book very insightful.


Statistical Decision Theory

Statistical Decision Theory

Author: James Berger

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 440

ISBN-13: 147571727X

DOWNLOAD EBOOK

Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.


Statistical Decision Theory and Bayesian Analysis

Statistical Decision Theory and Bayesian Analysis

Author: James O. Berger

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 633

ISBN-13: 147574286X

DOWNLOAD EBOOK

In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.


Statistical Decision Theory and Related Topics V

Statistical Decision Theory and Related Topics V

Author: Shanti S. Gupta

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 535

ISBN-13: 146122618X

DOWNLOAD EBOOK

The Fifth Purdue International Symposium on Statistical Decision The was held at Purdue University during the period of ory and Related Topics June 14-19,1992. The symposium brought together many prominent leaders and younger researchers in statistical decision theory and related areas. The format of the Fifth Symposium was different from the previous symposia in that in addition to the 54 invited papers, there were 81 papers presented in contributed paper sessions. Of the 54 invited papers presented at the sym posium, 42 are collected in this volume. The papers are grouped into a total of six parts: Part 1 - Retrospective on Wald's Decision Theory and Sequential Analysis; Part 2 - Asymptotics and Nonparametrics; Part 3 - Bayesian Analysis; Part 4 - Decision Theory and Selection Procedures; Part 5 - Probability and Probabilistic Structures; and Part 6 - Sequential, Adaptive, and Filtering Problems. While many of the papers in the volume give the latest theoretical developments in these areas, a large number are either applied or creative review papers.


Statistical Decision Theory and Related Topics

Statistical Decision Theory and Related Topics

Author: Shanti S. Gupta

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 398

ISBN-13: 1483260623

DOWNLOAD EBOOK

Statistical Decision Theory and Related Topics is a collection of the papers presented at the Symposium on Statistical Decision Theory and Related Topics which was held on November 23-25, 1970 at Purdue University. The conference brought together research workers in decision theory and related topics. This volume contains twenty papers presented during the symposium and includes works on molecular studies of evolution, globally optimal procedure for one-sided comparisons, multiple decision theory, outlier detection, empirical Bayes slippage tests, and non-optimality of likelihood ratio tests for sequential detection of signals in Gaussian noise. Mathematicians and statisticians will find the book highly insightful.


Statistical Decision Theory

Statistical Decision Theory

Author: F. Liese

Publisher: Springer Science & Business Media

Published: 2008-12-30

Total Pages: 696

ISBN-13: 0387731946

DOWNLOAD EBOOK

For advanced graduate students, this book is a one-stop shop that presents the main ideas of decision theory in an organized, balanced, and mathematically rigorous manner, while observing statistical relevance. All of the major topics are introduced at an elementary level, then developed incrementally to higher levels. The book is self-contained as it provides full proofs, worked-out examples, and problems. The authors present a rigorous account of the concepts and a broad treatment of the major results of classical finite sample size decision theory and modern asymptotic decision theory. With its broad coverage of decision theory, this book fills the gap between standard graduate texts in mathematical statistics and advanced monographs on modern asymptotic theory.


Frontiers of Statistical Decision Making and Bayesian Analysis

Frontiers of Statistical Decision Making and Bayesian Analysis

Author: Ming-Hui Chen

Publisher: Springer Science & Business Media

Published: 2010-07-24

Total Pages: 631

ISBN-13: 1441969446

DOWNLOAD EBOOK

Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.


Statistical Decision Problems

Statistical Decision Problems

Author: Michael Zabarankin

Publisher: Springer Science & Business Media

Published: 2013-12-16

Total Pages: 254

ISBN-13: 1461484715

DOWNLOAD EBOOK

Statistical Decision Problems presents a quick and concise introduction into the theory of risk, deviation and error measures that play a key role in statistical decision problems. It introduces state-of-the-art practical decision making through twenty-one case studies from real-life applications. The case studies cover a broad area of topics and the authors include links with source code and data, a very helpful tool for the reader. In its core, the text demonstrates how to use different factors to formulate statistical decision problems arising in various risk management applications, such as optimal hedging, portfolio optimization, cash flow matching, classification, and more. The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.


Theory of Games and Statistical Decisions

Theory of Games and Statistical Decisions

Author: David A. Blackwell

Publisher: Courier Corporation

Published: 2012-06-14

Total Pages: 388

ISBN-13: 0486150895

DOWNLOAD EBOOK

Evaluating statistical procedures through decision and game theory, as first proposed by Neyman and Pearson and extended by Wald, is the goal of this problem-oriented text in mathematical statistics. First-year graduate students in statistics and other students with a background in statistical theory and advanced calculus will find a rigorous, thorough presentation of statistical decision theory treated as a special case of game theory. The work of Borel, von Neumann, and Morgenstern in game theory, of prime importance to decision theory, is covered in its relevant aspects: reduction of games to normal forms, the minimax theorem, and the utility theorem. With this introduction, Blackwell and Professor Girshick look at: Values and Optimal Strategies in Games; General Structure of Statistical Games; Utility and Principles of Choice; Classes of Optimal Strategies; Fixed Sample-Size Games with Finite Ω and with Finite A; Sufficient Statistics and the Invariance Principle; Sequential Games; Bayes and Minimax Sequential Procedures; Estimation; and Comparison of Experiments. A few topics not directly applicable to statistics, such as perfect information theory, are also discussed. Prerequisites for full understanding of the procedures in this book include knowledge of elementary analysis, and some familiarity with matrices, determinants, and linear dependence. For purposes of formal development, only discrete distributions are used, though continuous distributions are employed as illustrations. The number and variety of problems presented will be welcomed by all students, computer experts, and others using statistics and game theory. This comprehensive and sophisticated introduction remains one of the strongest and most useful approaches to a field which today touches areas as diverse as gambling and particle physics.