Statistical Analysis of Noise in MRI

Statistical Analysis of Noise in MRI

Author: Santiago Aja-Fernández

Publisher: Springer

Published: 2016-07-12

Total Pages: 338

ISBN-13: 3319399349

DOWNLOAD EBOOK

This unique text presents a comprehensive review of methods for modeling signal and noise in magnetic resonance imaging (MRI), providing a systematic study, classifying and comparing the numerous and varied estimation and filtering techniques. Features: provides a complete framework for the modeling and analysis of noise in MRI, considering different modalities and acquisition techniques; describes noise and signal estimation for MRI from a statistical signal processing perspective; surveys the different methods to remove noise in MRI acquisitions from a practical point of view; reviews different techniques for estimating noise from MRI data in single- and multiple-coil systems for fully sampled acquisitions; examines the issue of noise estimation when accelerated acquisitions are considered, and parallel imaging methods are used to reconstruct the signal; includes appendices covering probability density functions, combinations of random variables used to derive estimators, and useful MRI datasets.


The Statistical Analysis of Functional MRI Data

The Statistical Analysis of Functional MRI Data

Author: Nicole Lazar

Publisher: Springer Science & Business Media

Published: 2008-06-10

Total Pages: 302

ISBN-13: 0387781919

DOWNLOAD EBOOK

The study of brain function is one of the most fascinating pursuits of m- ern science. Functional neuroimaging is an important component of much of the current research in cognitive, clinical, and social psychology. The exci- ment of studying the brain is recognized in both the popular press and the scienti?c community. In the pages of mainstream publications, including The New York Times and Wired, readers can learn about cutting-edge research into topics such as understanding how customers react to products and - vertisements (“If your brain has a ‘buy button,’ what pushes it?”, The New York Times,October19,2004),howviewersrespondtocampaignads(“Using M. R. I. ’s to see politics on the brain,” The New York Times, April 20, 2004; “This is your brain on Hillary: Political neuroscience hits new low,” Wired, November 12,2007),howmen and womenreactto sexualstimulation (“Brain scans arouse researchers,”Wired, April 19, 2004), distinguishing lies from the truth (“Duped,” The New Yorker, July 2, 2007; “Woman convicted of child abuse hopes fMRI can prove her innocence,” Wired, November 5, 2007), and even what separates “cool” people from “nerds” (“If you secretly like Michael Bolton, we’ll know,” Wired, October 2004). Reports on pathologies such as autism, in which neuroimaging plays a large role, are also common (for - stance, a Time magazine cover story from May 6, 2002, entitled “Inside the world of autism”).


Introduction to Functional Magnetic Resonance Imaging

Introduction to Functional Magnetic Resonance Imaging

Author: Richard B. Buxton

Publisher: Cambridge University Press

Published: 2009-08-27

Total Pages: 479

ISBN-13: 1139481304

DOWNLOAD EBOOK

Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.


Handbook of Functional MRI Data Analysis

Handbook of Functional MRI Data Analysis

Author: Russell A. Poldrack

Publisher: Cambridge University Press

Published: 2024-02-08

Total Pages: 0

ISBN-13: 9781009481168

DOWNLOAD EBOOK

Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging brain function. Handbook for Functional MRI Data Analysis provides a comprehensive and practical introduction to the methods used for fMRI data analysis. Using minimal jargon, this book explains the concepts behind processing fMRI data, focusing on the techniques that are most commonly used in the field. This book provides background about the methods employed by common data analysis packages including FSL, SPM, and AFNI. Some of the newest cutting-edge techniques, including pattern classification analysis, connectivity modeling, and resting state network analysis, are also discussed. Readers of this book, whether newcomers to the field or experienced researchers, will obtain a deep and effective knowledge of how to employ fMRI analysis to ask scientific questions and become more sophisticated users of fMRI analysis software.


Introduction to Neuroimaging Analysis

Introduction to Neuroimaging Analysis

Author: Mark Jenkinson

Publisher: Oxford University Press

Published: 2018

Total Pages: 277

ISBN-13: 0198816308

DOWNLOAD EBOOK

This accessible primer gives an introduction to the wide array of MRI-based neuroimaging methods that are used in research. It provides an overview of the fundamentals of what different MRI modalities measure, what artifacts commonly occur, the essentials of the analysis, and common 'pipelines'.


Human Brain Function

Human Brain Function

Author: Karl J. Friston

Publisher: Elsevier

Published: 2004-01-26

Total Pages: 1161

ISBN-13: 0080472958

DOWNLOAD EBOOK

This updated second edition provides the state of the art perspective of the theory, practice and application of modern non-invasive imaging methods employed in exploring the structural and functional architecture of the normal and diseased human brain. Like the successful first edition, it is written by members of the Functional Imaging Laboratory - the Wellcome Trust funded London lab that has contributed much to the development of brain imaging methods and their application in the last decade. This book should excite and intrigue anyone interested in the new facts about the brain gained from neuroimaging and also those who wish to participate in this area of brain science.* Represents an almost entirely new book from 1st edition, covering the rapid advances in methods and in understanding of how human brains are organized* Reviews major advances in cognition, perception, emotion and action* Introduces novel experimental designs and analytical techniques made possible with fMRI, including event-related designs and non-linear analysis


Diffusion MRI

Diffusion MRI

Author: Derek K Jones

Publisher: Oxford University Press

Published: 2010-11-11

Total Pages: 784

ISBN-13: 0199708703

DOWNLOAD EBOOK

Professor Derek Jones, a world authority on diffusion MRI, has assembled most of the world's leading scientists and clinicians developing and applying diffusion MRI to produce an authorship list that reads like a "Who's Who" of the field and an essential resource for those working with diffusion MRI. Destined to be a modern classic, this definitive and richly illustrated work covers all aspects of diffusion MRI from basic theory to clinical application. Oxford Clinical Neuroscience is a comprehensive, cross-searchable collection of resources offering quick and easy access to eleven of Oxford University Press's prestigious neuroscience texts. Joining Oxford Medicine Online these resources offer students, specialists and clinical researchers the best quality content in an easy-to-access format.


Statistical Parametric Mapping: The Analysis of Functional Brain Images

Statistical Parametric Mapping: The Analysis of Functional Brain Images

Author: William D. Penny

Publisher: Elsevier

Published: 2011-04-28

Total Pages: 689

ISBN-13: 0080466508

DOWNLOAD EBOOK

In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible


Tensors in Image Processing and Computer Vision

Tensors in Image Processing and Computer Vision

Author: Santiago Aja-Fernández

Publisher: Springer Science & Business Media

Published: 2009-05-21

Total Pages: 468

ISBN-13: 1848822995

DOWNLOAD EBOOK

Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.


Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN

Author: Alfonso Nieto-Castanon

Publisher: Hilbert Press

Published: 2020-01-31

Total Pages: 113

ISBN-13: 0578644002

DOWNLOAD EBOOK

This handbook describes methods for processing and analyzing functional connectivity Magnetic Resonance Imaging (fcMRI) data using the CONN toolbox, a popular freely-available functional connectivity analysis software. Content description [excerpt from introduction] The first section (fMRI minimal preprocessing pipeline) describes standard and advanced preprocessing steps in fcMRI. These steps are aimed at correcting or minimizing the influence of well-known factors affecting the quality of functional and anatomical MRI data, including effects arising from subject motion within the scanner, temporal and spatial image distortions due to the sequential nature of the scanning acquisition protocol, and inhomogeneities in the scanner magnetic field, as well as anatomical differences among subjects. Even after these conventional preprocessing steps, the measured blood-oxygen-level-dependent (BOLD) signal often still contains a considerable amount of noise from a combination of physiological effects, outliers, and residual subject-motion factors. If unaccounted for, these factors would introduce very strong and noticeable biases in all functional connectivity measures. The second section (fMRI denoising pipeline) describes standard and advanced denoising procedures in CONN that are used to characterize and remove the effect of these residual non-neural noise sources. Functional connectivity Magnetic Resonance Imaging studies attempt to quantify the level of functional integration across different brain areas. The third section (functional connectivity measures) describes a representative set of functional connectivity measures available in CONN, each focusing on different indicators of functional integration, including seed-based connectivity measures, ROI-to-ROI measures, graph theoretical approaches, network-based measures, and dynamic connectivity measures. Second-level analyses allow researchers to make inferences about properties of groups or populations, by generalizing from the observations of only a subset of subjects in a study. The fourth section (General Linear Model) describes the mathematics behind the General Linear Model (GLM), the approach used in CONN for all second-level analyses of functional connectivity measures. The description includes GLM model definition, parameter estimation, and hypothesis testing framework, as well as several practical examples and general guidelines aimed at helping researchers use this method to answer their specific research questions. The last section (cluster-level inferences) details several approaches implemented in CONN that allow researchers to make meaningful inferences from their second-level analysis results while providing appropriate family-wise error control (FWEC), whether in the context of voxel-based measures, such as when studying properties of seed-based maps across multiple subjects, or in the context of ROI-to-ROI measures, such as when studying properties of ROI-to-ROI connectivity matrices across multiple subjects.