Malware Detection

Malware Detection

Author: Mihai Christodorescu

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 307

ISBN-13: 0387445994

DOWNLOAD EBOOK

This book captures the state of the art research in the area of malicious code detection, prevention and mitigation. It contains cutting-edge behavior-based techniques to analyze and detect obfuscated malware. The book analyzes current trends in malware activity online, including botnets and malicious code for profit, and it proposes effective models for detection and prevention of attacks using. Furthermore, the book introduces novel techniques for creating services that protect their own integrity and safety, plus the data they manage.


Computer Networks and Inventive Communication Technologies

Computer Networks and Inventive Communication Technologies

Author: S. Smys

Publisher: Springer Nature

Published: 2021-06-02

Total Pages: 1212

ISBN-13: 9811596476

DOWNLOAD EBOOK

This book is a collection of peer-reviewed best selected research papers presented at 3rd International Conference on Computer Networks and Inventive Communication Technologies (ICCNCT 2020). The book covers new results in theory, methodology, and applications of computer networks and data communications. It includes original papers on computer networks, network protocols and wireless networks, data communication technologies, and network security. The proceedings of this conference is a valuable resource, dealing with both the important core and the specialized issues in the areas of next generation wireless network design, control, and management, as well as in the areas of protection, assurance, and trust in information security practice. It is a reference for researchers, instructors, students, scientists, engineers, managers, and industry practitioners for advance work in the area.


Android Malware

Android Malware

Author: Xuxian Jiang

Publisher: Springer Science & Business Media

Published: 2013-06-13

Total Pages: 50

ISBN-13: 1461473942

DOWNLOAD EBOOK

Mobile devices, such as smart phones, have achieved computing and networking capabilities comparable to traditional personal computers. Their successful consumerization has also become a source of pain for adopting users and organizations. In particular, the widespread presence of information-stealing applications and other types of mobile malware raises substantial security and privacy concerns. Android Malware presents a systematic view on state-of-the-art mobile malware that targets the popular Android mobile platform. Covering key topics like the Android malware history, malware behavior and classification, as well as, possible defense techniques.


Android Malware Detection using Machine Learning

Android Malware Detection using Machine Learning

Author: ElMouatez Billah Karbab

Publisher: Springer Nature

Published: 2021-07-10

Total Pages: 212

ISBN-13: 303074664X

DOWNLOAD EBOOK

The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures. First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Based on this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware. The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.


Computer Security -- ESORICS 2012

Computer Security -- ESORICS 2012

Author: Sara Foresti

Publisher: Springer

Published: 2012-08-19

Total Pages: 911

ISBN-13: 364233167X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 17th European Symposium on Computer Security, ESORICS 2012, held in Pisa, Italy, in September 2012. The 50 papers included in the book were carefully reviewed and selected from 248 papers. The articles are organized in topical sections on security and data protection in real systems; formal models for cryptography and access control; security and privacy in mobile and wireless networks; counteracting man-in-the-middle attacks; network security; users privacy and anonymity; location privacy; voting protocols and anonymous communication; private computation in cloud systems; formal security models; identity based encryption and group signature; authentication; encryption key and password security; malware and phishing; and software security.


Malware Analysis Using Artificial Intelligence and Deep Learning

Malware Analysis Using Artificial Intelligence and Deep Learning

Author: Mark Stamp

Publisher: Springer Nature

Published: 2020-12-20

Total Pages: 651

ISBN-13: 3030625826

DOWNLOAD EBOOK

​This book is focused on the use of deep learning (DL) and artificial intelligence (AI) as tools to advance the fields of malware detection and analysis. The individual chapters of the book deal with a wide variety of state-of-the-art AI and DL techniques, which are applied to a number of challenging malware-related problems. DL and AI based approaches to malware detection and analysis are largely data driven and hence minimal expert domain knowledge of malware is needed. This book fills a gap between the emerging fields of DL/AI and malware analysis. It covers a broad range of modern and practical DL and AI techniques, including frameworks and development tools enabling the audience to innovate with cutting-edge research advancements in a multitude of malware (and closely related) use cases.


Proceedings of ICRIC 2019

Proceedings of ICRIC 2019

Author: Pradeep Kumar Singh

Publisher: Springer Nature

Published: 2019-11-21

Total Pages: 897

ISBN-13: 3030294072

DOWNLOAD EBOOK

This book presents high-quality, original contributions (both theoretical and experimental) on software engineering, cloud computing, computer networks & internet technologies, artificial intelligence, information security, and database and distributed computing. It gathers papers presented at ICRIC 2019, the 2nd International Conference on Recent Innovations in Computing, which was held in Jammu, India, in March 2019. This conference series represents a targeted response to the growing need for research that reports on and assesses the practical implications of IoT and network technologies, AI and machine learning, cloud-based e-Learning and big data, security and privacy, image processing and computer vision, and next-generation computing technologies.


Advances in Big Data and Cloud Computing

Advances in Big Data and Cloud Computing

Author: Elijah Blessing Rajsingh

Publisher: Springer

Published: 2018-04-06

Total Pages: 402

ISBN-13: 9811072000

DOWNLOAD EBOOK

This book is a compendium of the proceedings of the International Conference on Big-Data and Cloud Computing. It includes recent advances in the areas of big data analytics, cloud computing, the Internet of nano things, cloud security, data analytics in the cloud, smart cities and grids, etc. Primarily focusing on the application of knowledge that promotes ideas for solving the problems of the society through cutting-edge technologies, it provides novel ideas that further world-class research and development. This concise compilation of articles approved by a panel of expert reviewers is an invaluable resource for researchers in the area of advanced engineering sciences.


Algorithms and Architectures for Parallel Processing

Algorithms and Architectures for Parallel Processing

Author: Jaideep Vaidya

Publisher: Springer

Published: 2018-12-07

Total Pages: 675

ISBN-13: 3030050637

DOWNLOAD EBOOK

The four-volume set LNCS 11334-11337 constitutes the proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2018, held in Guangzhou, China, in November 2018. The 141 full and 50 short papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on Distributed and Parallel Computing; High Performance Computing; Big Data and Information Processing; Internet of Things and Cloud Computing; and Security and Privacy in Computing.