State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences

State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences

Author: National Academies of Sciences, Engineering, and Medicine

Publisher:

Published: 2019-01-30

Total Pages: 350

ISBN-13: 9780309440271

DOWNLOAD EBOOK

Earthquake-induced soil liquefaction (liquefaction) is a leading cause of earthquake damage worldwide. Liquefaction is often described in the literature as the phenomena of seismic generation of excess porewater pressures and consequent softening of granular soils. Many regions in the United States have been witness to liquefaction and its consequences, not just those in the west that people associate with earthquake hazards. Past damage and destruction caused by liquefaction underline the importance of accurate assessments of where liquefaction is likely and of what the consequences of liquefaction may be. Such assessments are needed to protect life and safety and to mitigate economic, environmental, and societal impacts of liquefaction in a cost-effective manner. Assessment methods exist, but methods to assess the potential for liquefaction triggering are more mature than are those to predict liquefaction consequences, and the earthquake engineering community wrestles with the differences among the various assessment methods for both liquefaction triggering and consequences. State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences evaluates these various methods, focusing on those developed within the past 20 years, and recommends strategies to minimize uncertainties in the short term and to develop improved methods to assess liquefaction and its consequences in the long term. This report represents a first attempt within the geotechnical earthquake engineering community to consider, in such a manner, the various methods to assess liquefaction consequences.


Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022)

Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022)

Author: Lanmin Wang

Publisher: Springer Nature

Published: 2022-09-19

Total Pages: 2417

ISBN-13: 3031118987

DOWNLOAD EBOOK

The 4th International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-IV) is held in Beijing, China. The PBD-IV Conference is organized under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering - Technical Committee TC203 on Earthquake Geotechnical Engineering and Associated Problems (ISSMGE-TC203). The PBD-I, PBD-II, and PBD-III events in Japan (2009), Italy (2012), and Canada (2017) respectively, were highly successful events for the international earthquake geotechnical engineering community. The PBD events have been excellent companions to the International Conference on Earthquake Geotechnical Engineering (ICEGE) series that TC203 has held in Japan (1995), Portugal (1999), USA (2004), Greece (2007), Chile (2011), New Zealand (2015), and Italy (2019). The goal of PBD-IV is to provide an open forum for delegates to interact with their international colleagues and advance performance-based design research and practices for earthquake geotechnical engineering.


Earthquakes and Water

Earthquakes and Water

Author: Chi-yuen Wang

Publisher: Springer

Published: 2010-01-11

Total Pages: 228

ISBN-13: 3642008100

DOWNLOAD EBOOK

Based on the graduate course in Earthquake Hydrology at Berkeley University, this text introduces the basic materials, provides a comprehensive overview of the field to interested readers and beginning researchers, and acts as a convenient reference point.


Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Author: Francesco Silvestri

Publisher: CRC Press

Published: 2019-07-19

Total Pages: 8083

ISBN-13: 0429632010

DOWNLOAD EBOOK

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.


Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics

Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics

Author: T.G. Sitharam

Publisher: Springer Nature

Published: 2021-07-01

Total Pages: 550

ISBN-13: 9811614687

DOWNLOAD EBOOK

This volume brings together contributions from world renowned researchers and practitioners in the field of geotechnical engineering. The chapters of this book are based on the keynote and invited lectures delivered at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The book presents advances in the field of soil dynamics and geotechnical earthquake engineering. A strong emphasis is placed on proving connections between academic research and field practice, with many examples, case studies, best practices, and discussions on performance-based design. This volume will be of interest to research scholars, academicians and industry professionals alike.


National Earthquake Resilience

National Earthquake Resilience

Author: National Research Council

Publisher: National Academies Press

Published: 2011-09-09

Total Pages: 197

ISBN-13: 0309186773

DOWNLOAD EBOOK

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.


Relationship Between Erodibility and Properties of Soils

Relationship Between Erodibility and Properties of Soils

Author: J.-L. Briaud

Publisher:

Published: 2019

Total Pages: 327

ISBN-13: 9780309480758

DOWNLOAD EBOOK

TRB's National Cooperative Highway Research Program (NCHRP) has released NCHRP Research Report 915: Relationship Between Erodibility and Properties of Soils, which provides reliable and simple equations quantifying the erodibility of soils based on soil properties. The report presents a detailed analysis of the issue. In addition, the project that developed the report also produced a searchable spreadsheet that uses statistical techniques to relate geotechnical properties to soil erodibility. The spreadsheet, NCHRP Erosion, includes a searchable database that includes compiled erosion data from the literature review and a plethora of erosion tests. It contains equations which may be used to estimate the erosion resistance of soil and determine whether erosion tests are needed.


Developments in Earthquake Geotechnics

Developments in Earthquake Geotechnics

Author: Susumu Iai

Publisher: Springer

Published: 2017-10-17

Total Pages: 412

ISBN-13: 331962069X

DOWNLOAD EBOOK

This book provides a timely review and summary of the recent advances in state-of-the-art earthquake geotechnics. The earthquake disasters in Japan and New Zealand in 2011 prompted the urgent need for the state-of-the-art earthquake geotechnics to be put into practice for disaster mitigation. By reviewing the developments in earthquake geotechnics over more than half a century, this unique book enables readers to obtain solid grasp of this discipline. It is based on contributions from 18 leading international experts, who met in Kyoto in June 2016 to discuss a range of issues related to the developments of earthquake geotechnics. It comprehensively discusses various areas of earthquake geotechnics, including performance-based seismic design; the evolution of geotechnical seismic response analysis from 1964-2015; countermeasures against liquefaction; solutions for nuclear power plant disasters; the tsunami-caused inundation of the Tokyo metropolitan area; and a series of state-of-the-art effective stress analyses of case histories from the 2011 East Japan Earthquake. The book is of interest to advanced level researchers and practicing engineers in the field of earthquake geotechnics.