Permanent Magnet Reluctance & Self Synchronous Motors

Permanent Magnet Reluctance & Self Synchronous Motors

Author: Syed A. Nasar

Publisher: Springer

Published: 1993-03-17

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

Permanent Magnet, Reluctance, and Self-Synchronous Motors discusses the theory, design, and control of permanent magnet materials. The book describes permanent magnets and their applications to electric machines as well as their performance characteristics and limitations. It presents the performance and calculations of PM commutator motors and an approach to their design. Permanent magnet synchronous motors, finite-element calculations, design methodologies, and rectangular and sinusoidal current control are discussed. It presents reluctance motors, their topologies and performance analyses as well as reluctance synchronous motors, with very large rotor saliency ratios, and their vector control. Numerical examples and data of practical interest are provided throughout the book. The book will be very useful to engineers involved in the design and manufacturing of permanent magnet and reluctance motors and high-performance drives, as well as electrical engineering students and educators.


The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors

The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors

Author: Gianmario Pellegrino

Publisher: Springer

Published: 2016-04-28

Total Pages: 142

ISBN-13: 3319322028

DOWNLOAD EBOOK

This book offers an essential compendium on the analysis and design of synchronous motors for variable-speed applications. Focusing on synchronous reluctance and ferrite permanent-magnet (PM) synchronous reluctance machines, it provides a broad perspective on three-phase machines for variable speed applications, a field currently dominated by asynchronous machines and rare-earth PM synchronous machines. It also describes synchronous reluctance machines and PM machines without rare-earth materials, comparing them to state-of-the-art solutions. The book provides readers with extensive information on and finite element models of PM synchronous machines, including all relevant equations and with an emphasis on synchronous-reluctance and PM-assisted synchronous-reluctance machines. It covers ferrite-assisted machines, modeled as a subcase of PM-assistance, fractional slot combinations solutions, and a quantitative, normalized comparison of torque capability with benchmark PM machines. The book discusses a wealth of techniques for identifying machine parameters, with an emphasis on self-commissioning algorithms, and presents methods for automated machine design and optimization, including a software tool developed for this purpose. Addressing an important gap in the field of PM-less and less-PM electrical machines, it is intended as a self-contained reference guide for both graduate students and professional machine designers, and as a useful text for university courses on automated and/or optimized design of electrical machines and drives.


Synchronous Reluctance Machines

Synchronous Reluctance Machines

Author: Nicola Bianchi

Publisher: IET

Published: 2021-12-21

Total Pages: 368

ISBN-13: 1839532637

DOWNLOAD EBOOK

The comprehensive reference on synchronous reluctance machines, which offer high power density at low cost and support the electrification in the transport sector. This book, written by top academic and industry experts, covers all topics required to design these machines.


Permanent Magnet Synchronous Machines and Drives

Permanent Magnet Synchronous Machines and Drives

Author: Wei Xu

Publisher: CRC Press

Published: 2023-07-31

Total Pages: 279

ISBN-13: 1000909700

DOWNLOAD EBOOK

Permanent magnet synchronous motors (PMSMs) are popular in the electric vehicle industry due to their high-power density, large torque-to-inertia ratio, and high reliability. This book presents an improved field-oriented control (FOC) strategy for PMSMs that utilizes optimal proportional-integral (PI) parameters to achieve robust stability, faster dynamic response, and higher efficiency in the flux-weakening region. The book covers the combined design of a PI current regulator and varying switching frequency pulse-width modulation (PWM), along with an improved linear model predictive control (MPC) strategy. Researchers and graduate students in electrical engineering, systems and control, and electric vehicles will find this book useful. Features: • Implements evolutionary optimization algorithms to improve PMSM performance. • Provides coverage of PMSM control design in the flux-weakening region. • Proposes a modern method of model predictive control to improve the dynamic performance of interior PMSM. • Studies the dynamic performance of two kinds of PMSMs: surface-mounted and interior permanent magnet types. • Includes several case studies and illustrative examples with MATLAB®. This book is aimed at researchers, graduate students, and libraries in electrical engineering with specialization in systems and control and electric vehicles.


Control of Permanent Magnet Synchronous Motors

Control of Permanent Magnet Synchronous Motors

Author: Sadegh Vaez-Zadeh

Publisher: Oxford University Press

Published: 2018-02-23

Total Pages: 384

ISBN-13: 0191060674

DOWNLOAD EBOOK

Permanent magnet synchronous (PMS) motors stand at the forefront of electric motor development due to their energy saving capabilities and performance potential. The motors have been developed in response to mounting environmental crises and growing electricity prices, and they have enabled the emergence of motor drive applications like those found in electric and hybrid vehicles, fly by wire, and drones. Control of Permanent Magnet Synchronous Motors is a timely advancement along that path as the first comprehensive, self-contained, and thoroughly up-to-date book devoted solely to the control of PMS motors. It offers a deep and extended analysis, design, implementation, and performance evaluation of major motor control methods, including Vector, Direct Torque, Predictive, Deadbeat, and Combined Control, in a systematic and coherent manner. All major Sensorless Control and Parameter Estimation methods are also studied. The book places great emphasis on energy saving control schemes.


Permanent Magnet Synchronous Machines

Permanent Magnet Synchronous Machines

Author: Sandra Eriksson

Publisher: MDPI

Published: 2019-08-20

Total Pages: 282

ISBN-13: 3039213504

DOWNLOAD EBOOK

Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.


Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor

Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor

Author: Muhammad Ali Masood Cheema

Publisher: Springer Nature

Published: 2020-02-13

Total Pages: 244

ISBN-13: 3030403254

DOWNLOAD EBOOK

This book explores the direct thrust force control (DTFC) of tubular surface-mount linear permanent magnet synchronous motors (linear PMSMs). It presents a detailed account and analysis of several advanced nonlinear control schemes, based on the direct thrust control principle, to achieve a reduction in steady-state ripple in thrust force with faster transient response, and describes their experimental validation. It also provides rigorous details of the dynamic modelling of linear PMSMs from a control system perspective, and demonstrates the superior control performance of the proposed techniques compared to the current state-of-the-art techniques. Lastly, the book proposes and validates a stator flux observer for sensorless speed estimation comprising a linear state observer and an improved sliding mode component.