These three works cover the entire field of formation evaluation, from basic concepts and theories, through standard methods used by the petroleum industry, on to new and exciting applications in environmental science and engineering, hydrogeology, and other fields. Designed to be used individually or as a set, these volumes represent the first comprehensive assessment of all exploration methodologies. No other books offer the breadth of information and range of applications available in this set.
These three works cover the entire field of formation evaluation, from basic concepts and theories, through standard methods used by the petroleum industry, on to new and exciting applications in environmental science and engineering, hydrogeology, and other fields. Designed to be used individually or as a set, these volumes represent the first comprehensive assessment of all exploration methodologies. No other books offer the breadth of information and range of applications available in this set. The first volume, Introduction to Geophysical Formation Evaluation, is the perfect introductory reference for environmental professionals without previous training in the field. It explains the fundamentals of geophysical exploration and analysis, illuminates the underlying theories, and offers practical guidance on how to use the available methodologies. General information on material behavior, porosity, tortuosity, permeability, cores, resistivity, radioactivity, and more provides a solid foundation for more advanced studies. The second volume, Standard Methods of Geophysical Formation Evaluation builds on the basic precepts presented in the first work but can be used alone as a self-contained reference. It covers all the petroleum-oriented standard methods which, until recently, have comprised the majority of applications of geophysical formation evaluation. It also points out non-hydrocarbon uses of petroleum methods. This volume provides complete practical information and instructions on using the standard exploration and evaluation methods. It presents comprehensive, painstakingly detailed instructions for resistivity, radiation, and acoustic methods. The third volume, Non-Hydrocarbon Methods of Geophysical Formation Evaluation, discusses uses of formation evaluation in environmental science and engineering, hydrogeology, and other fields outside the petroleum industry, and demonstrates how the standard methods can be adapted to these non-hydrocarbon purposes. It presents step-by-step instructions for photon, magnetic, nuclear, and acoustic methods of exploration, and gives special attention to the analytical techniques used in non-hydrocarbon exploration. Individually, each book is a complete, stand-alone reference on an important area of this changing field. Together, the three volumes provide the most complete practical compendium available on all aspects of formation evaluation.
These three works cover the entire field of formation evaluation, from basic concepts and theories, through standard methods used by the petroleum industry, on to new and exciting applications in environmental science and engineering, hydrogeology, and other fields. Designed to be used individually or as a set, these volumes represent the first comprehensive assessment of all exploration methodologies. No other books offer the breadth of information and range of applications available in this set. The first volume, Introduction to Geophysical Formation Evaluation, is the perfect introductory reference for environmental professionals without previous training in the field. It explains the fundamentals of geophysical exploration and analysis, illuminates the underlying theories, and offers practical guidance on how to use the available methodologies. General information on material behavior, porosity, tortuosity, permeability, cores, resistivity, radioactivity, and more provides a solid foundation for more advanced studies. The second volume, Standard Methods of Geophysical Formation Evaluation builds on the basic precepts presented in the first work but can be used alone as a self-contained reference. It covers all the petroleum-oriented standard methods which, until recently, have comprised the majority of applications of geophysical formation evaluation. It also points out non-hydrocarbon uses of petroleum methods. This volume provides complete practical information and instructions on using the standard exploration and evaluation methods. It presents comprehensive, painstakingly detailed instructions for resistivity, radiation, and acoustic methods. The third volume, Non-Hydrocarbon Methods of Geophysical Formation Evaluation, discusses uses of formation evaluation in environmental science and engineering, hydrogeology, and other fields outside the petroleum industry, and demonstrates how the standard methods can be adapted to these non-hydrocarbon purposes. It presents step-by-step instructions for photon, magnetic, nuclear, and acoustic methods of exploration, and gives special attention to the analytical techniques used in non-hydrocarbon exploration. Individually, each book is a complete, stand-alone reference on an important area of this changing field. Together, the three volumes provide the most complete practical compendium available on all aspects of formation evaluation.
A synthesis of years of interdisciplinary research and practice, the second edition of this bestseller continues to serve as a primary resource for information on the assessment, remediation, and control of contamination on and below the ground surface. Practical Handbook of Soil, Vadose Zone, and Ground-Water Contamination: Assessment, Prev
A key reference on the self-potential method for researchers, professionals and students in geophysics, environmental science, hydrology and geotechnical engineering.
The first edition of this book demystified the process of well log analysis for students, researchers and practitioners. In the two decades since, the industry has changed enormously: technical staffs are smaller, and hydrocarbons are harder to locate, quantify, and produce. New drilling techniques have engendered new measurement devices incorporated into the drilling string. Corporate restructuring and the "graying" of the workforce have caused a scarcity in technical competence involved in the search and exploitation of petroleum. The updated 2nd Edition reviews logging measurement technology developed in the last twenty years, and expands the petrophysical applications of the measurements.
This hand guide in the Gulf Drilling Guides series offers practical techniques that are valuable to petrophysicists and engineers in their day-to-day jobs. Based on the author's many years of experience working in oil companies around the world, this guide is a comprehensive collection of techniques and rules of thumb that work.The primary functions of the drilling or petroleum engineer are to ensure that the right operational decisions are made during the course of drilling and testing a well, from data gathering, completion and testing, and thereafter to provide the necessary parameters to enable an accurate static and dynamic model of the reservoir to be constructed. This guide supplies these, and many other, answers to their everyday problems. There are chapters on NMR logging, core analysis, sampling, and interpretation of the data to give the engineer a full picture of the formation. There is no other single guide like this, covering all aspects of well logging and formation evaluation, completely updated with the latest techniques and applications.·A valuable reference dedicated solely to well logging and formation evaluation.·Comprehensive coverage of the latest technologies and practices, including, troubleshooting for stuck pipe, operational decisions, and logging contracts.·Packed with money-saving and time saving strategies for the engineer working in the field.