Stability in Modules for Classical Lie Algebras: A Constructive Approach

Stability in Modules for Classical Lie Algebras: A Constructive Approach

Author: Georgia Benkart

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 177

ISBN-13: 0821824929

DOWNLOAD EBOOK

In this work we consider the problem of determining information about representations as the rank grows large, in fact, tends to infinity. Here we show that the set of dominant weights stabilizes as the rank goes to infinity and the multiplicities become polynomials in the rank. In addition, we give effective, easily computable algorithms for determining the set of dominant weights and illustrate how to calculate their multiplicity polynomials.


Yangians and Classical Lie Algebras

Yangians and Classical Lie Algebras

Author: Alexander Molev

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 422

ISBN-13: 0821843745

DOWNLOAD EBOOK

The Yangians and twisted Yangians are remarkable associative algebras taking their origins from the work of St. Petersburg's school of mathematical physics in the 1980s. This book is an introduction to the theory of Yangians and twisted Yangians, with a particular emphasis on the relationship with the classical matrix Lie algebras.


Projective Modules over Lie Algebras of Cartan Type

Projective Modules over Lie Algebras of Cartan Type

Author: Daniel Ken Nakano

Publisher: American Mathematical Soc.

Published: 1992

Total Pages: 97

ISBN-13: 0821825305

DOWNLOAD EBOOK

This paper investigates the question of linkage and block theory for Lie algebras of Cartan type. The second part of the paper deals mainly with block structure and projective modules of Lies algebras of types W and K.


Lie Algebras and Their Representations

Lie Algebras and Their Representations

Author: Seok-Jin Kang

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 242

ISBN-13: 0821805126

DOWNLOAD EBOOK

Over the past 30 years, exciting developments in diverse areas of the theory of Lie algebras and their representations have been observed. The symposium covered topics such as Lie algebras and combinatorics, crystal bases for quantum groups, quantum groups and solvable lattice models, and modular and infinite-dimensional Lie algebras. In this volume, readers will find several excellent expository articles and research papers containing many significant new results in this area.


Representations and Invariants of the Classical Groups

Representations and Invariants of the Classical Groups

Author: Roe Goodman

Publisher: Cambridge University Press

Published: 2000-01-13

Total Pages: 708

ISBN-13: 9780521663489

DOWNLOAD EBOOK

More than half a century has passed since Weyl's 'The Classical Groups' gave a unified picture of invariant theory. This book presents an updated version of this theory together with many of the important recent developments. As a text for those new to the area, this book provides an introduction to the structure and finite-dimensional representation theory of the complex classical groups that requires only an abstract algebra course as a prerequisite. The more advanced reader will find an introduction to the structure and representations of complex reductive algebraic groups and their compact real forms. This book will also serve as a reference for the main results on tensor and polynomial invariants and the finite-dimensional representation theory of the classical groups. It will appeal to researchers in mathematics, statistics, physics and chemistry whose work involves symmetry groups, representation theory, invariant theory and algebraic group theory.


Lie Algebras Graded by the Root Systems BC$_r$, $r\geq 2$

Lie Algebras Graded by the Root Systems BC$_r$, $r\geq 2$

Author: Bruce Normansell Allison

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 175

ISBN-13: 0821828118

DOWNLOAD EBOOK

Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.


New Perspectives in Algebraic Combinatorics

New Perspectives in Algebraic Combinatorics

Author: Louis J. Billera

Publisher: Cambridge University Press

Published: 1999-09-28

Total Pages: 360

ISBN-13: 9780521770873

DOWNLOAD EBOOK

This text contains expository contributions by respected researchers on the connections between algebraic geometry, topology, commutative algebra, representation theory, and convex geometry.


Recent Developments in Quantum Affine Algebras and Related Topics

Recent Developments in Quantum Affine Algebras and Related Topics

Author: Naihuan Jing

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 482

ISBN-13: 0821811991

DOWNLOAD EBOOK

This volume reflects the proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications held at North Carolina State University (Raleigh). In recent years, the theory of affine and quantum affine Lie algebras has become an important area of mathematical research with numerous applications in other areas of mathematics and physics. Three areas of recent progress are the focus of this volume: affine and quantum affine algebras and their generalizations, vertex operator algebras and their representations, and applications in combinatorics and statistical mechanics. Talks given by leading international experts at the conference offered both overviews on the subjects and current research results. The book nicely presents the interplay of these topics recently occupying "centre stage" in the theory of infinite dimensional Lie theory.


Categories of Modules over Endomorphism Rings

Categories of Modules over Endomorphism Rings

Author: Theodore Gerard Faticoni

Publisher: American Mathematical Soc.

Published: 1993

Total Pages: 164

ISBN-13: 9780821825549

DOWNLOAD EBOOK

It is the goal of the memoir to develop a functorial transfer of properties between [italic capital]A and [script capital]M[subscript italic capital]E, the category of modules over [italic capital]E, that is more sensitive than the traditional starting point, Hom([italic capital]A, ยท). This memoir should be accessible to anyone who has a working knowledge of rings, modules, functors, and categories equivalent to that gained by reading Anderson and Fuller's text "Rings and Categories of Modules."


Symmetry, Representations, and Invariants

Symmetry, Representations, and Invariants

Author: Roe Goodman

Publisher: Springer Science & Business Media

Published: 2009-07-30

Total Pages: 731

ISBN-13: 0387798528

DOWNLOAD EBOOK

Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.