Stability and Control of Airplanes and Helicopters

Stability and Control of Airplanes and Helicopters

Author: Edward Seckel

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 523

ISBN-13: 148322015X

DOWNLOAD EBOOK

Stability and Control of Airplanes and Helicopters deals with aircraft flying qualities that determine the stability and control of airplanes and helicopters. It includes problems based on real aircraft, selected to represent the gamut from simple to complicated, and from conventional utility designs to futuristic research types. Many of these problems involve comparison of theory and experiment to demonstrate their mutual relationship. Comprised of 25 chapters, this book begins with a discussion on the aerodynamics of the component parts related to the lift and moment characteristics of an airplane, including wings and associated accessories; bodies such as fuselages, nacelles, and tip tanks; and control surfaces. The reader is then introduced to some mathematical techniques for linear differential equations; steady flight at different speeds; and stick force and control-free stability. Subsequent chapters focus on flaps and high-lift devices; power and compressibility effects; and the manner in which the aircraft responds to the application of control. Aeroelasticity and longitudinal equations of motion are also examined. This monograph is intended for undergraduate and graduate students taking modern engineering courses.


Flight Stability and Automatic Control

Flight Stability and Automatic Control

Author: Robert C. Nelson

Publisher: WCB/McGraw-Hill

Published: 1998

Total Pages: 441

ISBN-13: 9780071158381

DOWNLOAD EBOOK

The second edition of Flight Stability and Automatic Control presents an organized introduction to the useful and relevant topics necessary for a flight stability and controls course. Not only is this text presented at the appropriate mathematical level, it also features standard terminology and nomenclature, along with expanded coverage of classical control theory, autopilot designs, and modern control theory. Through the use of extensive examples, problems, and historical notes, author Robert Nelson develops a concise and vital text for aircraft flight stability and control or flight dynamics courses.


Airplane Stability and Control

Airplane Stability and Control

Author: Malcolm J. Abzug

Publisher: Cambridge University Press

Published: 2002-09-23

Total Pages: 417

ISBN-13: 1107320194

DOWNLOAD EBOOK

From the early machines to today's sophisticated aircraft, stability and control have always been crucial considerations. In this second edition, Abzug and Larrabee again forge through the history of aviation technologies to present an informal history of the personalities and the events, the art and the science of airplane stability and control. The book includes never-before-available impressions of those active in the field, from pre-Wright brothers airplane and glider builders through to contemporary aircraft designers. Arranged thematically, the book deals with early developments, research centers, the effects of power on stability and control, the discovery of inertial coupling, the challenge of stealth aerodynamics, a look toward the future, and much more. It is profusely illustrated with photographs and figures, and includes brief biographies of noted stability and control figures along with a core bibliography. Professionals, students, and aviation enthusiasts alike will appreciate this readable history of airplane stability and control.


Advanced UAV Aerodynamics, Flight Stability and Control

Advanced UAV Aerodynamics, Flight Stability and Control

Author: Pascual Marqués

Publisher: John Wiley & Sons

Published: 2017-07-11

Total Pages: 799

ISBN-13: 1118928687

DOWNLOAD EBOOK

Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.


Helicopter Flight Dynamics

Helicopter Flight Dynamics

Author: Gareth D. Padfield

Publisher: John Wiley & Sons

Published: 2018-11-19

Total Pages: 858

ISBN-13: 1119401054

DOWNLOAD EBOOK

The Book The behaviour of helicopters and tiltrotor aircraft is so complex that understanding the physical mechanisms at work in trim, stability and response, and thus the prediction of Flying Qualities, requires a framework of analytical and numerical modelling and simulation. Good Flying Qualities are vital for ensuring that mission performance is achievable with safety and, in the first and second editions of Helicopter Flight Dynamics, a comprehensive treatment of design criteria was presented, relating to both normal and degraded Flying Qualities. Fully embracing the consequences of Degraded Flying Qualities during the design phase will contribute positively to safety. In this third edition, two new Chapters are included. Chapter 9 takes the reader on a journey from the origins of the story of Flying Qualities, tracing key contributions to the developing maturity and to the current position. Chapter 10 provides a comprehensive treatment of the Flight Dynamics of tiltrotor aircraft; informed by research activities and the limited data on operational aircraft. Many of the unique behavioural characteristics of tiltrotors are revealed for the first time in this book. The accurate prediction and assessment of Flying Qualities draws on the modelling and simulation discipline on the one hand and testing practice on the other. Checking predictions in flight requires clearly defined mission tasks, derived from realistic performance requirements. High fidelity simulations also form the basis for the design of stability and control augmentation systems, essential for conferring Level 1 Flying Qualities. The integrated description of flight dynamic modelling, simulation and flying qualities of rotorcraft forms the subject of this book, which will be of interest to engineers practising and honing their skills in research laboratories, academia and manufacturing industries, test pilots and flight test engineers, and as a reference for graduate and postgraduate students in aerospace engineering.


Advances In Aircraft Flight Control

Advances In Aircraft Flight Control

Author: MB Tischler

Publisher: Routledge

Published: 2018-04-24

Total Pages: 450

ISBN-13: 135146843X

DOWNLOAD EBOOK

This book provides a single comprehensive resource that reviews many of the current aircraft flight control programmes from the perspective of experienced practitioners directly involved in the projects. Each chapter discusses a specific aircraft flight programme covering the control system design considerations, control law architecture, simulation and analysis, flight test optimization and handling qualities evaluations. The programmes described have widely exploited modern interdisciplinary tools and techniques and the discussions include extensive flight test results. Many important `lessons learned' are included from the experience gained when design methods and requirements were tested and optimized in actual flight demonstration.


An Analytical Study of V/STOL Handling Qualities in Hover and Transition

An Analytical Study of V/STOL Handling Qualities in Hover and Transition

Author: R. L. Stapleford

Publisher:

Published: 1965

Total Pages: 174

ISBN-13:

DOWNLOAD EBOOK

The hover analysis considers pilot attitude and position control tasks in the presence of horizontal gusts. The effects of each of the stability derivatives on the difficulty of the control tasks and on the closed-loop gust responses are determined. It is clearly shown that the handling qualities studies of control sensitivity and angular damping must consider the influences of M sub u (or L sub v) and should include gust inputs. These conclusions are substantiated by previous variable-stability-helicopter experiments. The effects of vehicle size and geometry are investigated by several approaches. The key result of increasing size is found to be a reduction in M sub u and L sub v which can, in turn, lower the requirements for control power and damping. The handling qualities during transition of two vehicles, a tilt duct and a tilt wing, which were previously tested on a simulator are analyzed. It is shown that both trim control and perturbations about the trim conditions must be considered. In fact, part of the increased difficulty in landing transitions, in comparison with takeoff transitions, is due to more difficult trim control; the much more stringent position control requirements in landing are also a contributing factor.