Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, Spin Glasses and Complexity also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts.
This book contains a detailed and self-contained presentation of the replica theory of infinite range spin glasses. The authors also explain recent theoretical developments, paying particular attention to new applications in the study of optimization theory and neural networks. About two-thirds of the book are a collection of the most interesting and pedagogical articles on the subject.
In the eighties, a group of theoretical physicists introduced several models for certain disordered systems, called "spin glasses". These models are simple and rather canonical random structures, that physicists studied by non-rigorous methods. They predicted spectacular behaviors, previously unknown in probability theory. They believe these behaviors occur in many models of considerable interest for several branches of science (statistical physics, neural networks and computer science). This book introduces in a rigorous manner this exciting new area to the mathematically minded reader. It requires no knowledge whatsoever of any physics, and contains proofs in complete detail of much of what is rigorously known on spin glasses at the time of writing.
The last few years have seen many developments in the study of ?frustrated? systems, such as spin glasses and random fields. In addition, the application of the idea of spin glasses to other branches of physics, such as vortex lines in high temperature superconductors, protein folding, structural glasses, and the vulcanization of rubber, has been flourishing. The earlier reviews are several years old, so now is an appropriate time to summarize the recent developments. The articles in this book have been written by leading researchers and include theoretical and experimental studies, and large-scale numerical work (using state-of-the-art algorithms designed specifically for spin-glass-type problems), as well as analytical studies.
This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments
This book aims to describe in simple terms the new area of statistical mechanics known as spin-glasses, encompassing systems in which quenched disorder is the dominant factor. The book begins with a non-mathematical explanation of the problem, and the modern understanding of the physics of the spin-glass state is formulated in general terms. Next, the 'magic' of the replica symmetry breaking scheme is demonstrated and the physics behind it discussed. Recent experiments on real spin-glass materials are briefly described to demonstrate how this somewhat abstract physics can be studied in the laboratory. The final chapters of the book are devoted to statistical models of neural networks.The material here is self-contained and should be accessible to students with a basic knowledge of theoretical physics and statistical mechanics. It has been used for a one-term graduate lecture course at the Landau Institute for Theoretical Physics.
The book introduces some useful and little known techniques in statistical mechanics and field theory including multiple Legendre transforms, supersymmetry, Fourier transforms on a tree, infinitesimal permutations and Ward Takahashi Identities."--Jacket.
This volume is an introduction to the application of techniques developed for the study of disordered systems to problems which arise in biology. Topics presented include neural networks, adaptation and evolution, maturation of the immune response, and protein dynamics and folding. This book will appeal to students and researchers interested in statistical and condensed matter physics, glasses and spin glasses, and biophysics.