Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Author: Hajime Urakawa

Publisher: World Scientific

Published: 2017-06-02

Total Pages: 310

ISBN-13: 9813109106

DOWNLOAD EBOOK

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.


An Introduction to Laplacian Spectral Distances and Kernels

An Introduction to Laplacian Spectral Distances and Kernels

Author: Giuseppe Patanè

Publisher: Morgan & Claypool Publishers

Published: 2017-07-05

Total Pages: 141

ISBN-13: 1681731401

DOWNLOAD EBOOK

In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances. Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions. All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application.


Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry

Author: M.-E. Craioveanu

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 447

ISBN-13: 940172475X

DOWNLOAD EBOOK

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.


The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold

Author: Steven Rosenberg

Publisher: Cambridge University Press

Published: 1997-01-09

Total Pages: 190

ISBN-13: 9780521468312

DOWNLOAD EBOOK

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.


The Theory of Finslerian Laplacians and Applications

The Theory of Finslerian Laplacians and Applications

Author: P.L. Antonelli

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 305

ISBN-13: 9401152829

DOWNLOAD EBOOK

Finslerian Laplacians have arisen from the demands of modelling the modern world. However, the roots of the Laplacian concept can be traced back to the sixteenth century. Its phylogeny and history are presented in the Prologue of this volume. The text proper begins with a brief introduction to stochastically derived Finslerian Laplacians, facilitated by applications in ecology, epidemiology and evolutionary biology. The mathematical ideas are then fully presented in section II, with generalizations to Lagrange geometry following in section III. With section IV, the focus abruptly shifts to the local mean-value approach to Finslerian Laplacians and a Hodge-de Rham theory is developed for the representation on real cohomology classes by harmonic forms on the base manifold. Similar results are proved in sections II and IV, each from different perspectives. Modern topics treated include nonlinear Laplacians, Bochner and Lichnerowicz vanishing theorems, Weitzenböck formulas, and Finslerian spinors and Dirac operators. The tools developed in this book will find uses in several areas of physics and engineering, but especially in the mechanics of inhomogeneous media, e.g. Cofferat continua. Audience: This text will be of use to workers in stochastic processes, differential geometry, nonlinear analysis, epidemiology, ecology and evolution, as well as physics of the solid state and continua.


Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces

Author: Peter Buser

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 473

ISBN-13: 0817649921

DOWNLOAD EBOOK

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.


Spectral Theory in Riemannian Geometry

Spectral Theory in Riemannian Geometry

Author: Olivier Lablée

Publisher: Erich Schmidt Verlag GmbH & Co. KG

Published: 2015

Total Pages: 204

ISBN-13: 9783037191514

DOWNLOAD EBOOK

Spectral theory is a diverse area of mathematics that derives its motivations, goals, and impetus from several sources. In particular, the spectral theory of the Laplacian on a compact Riemannian manifold is a central object in differential geometry. From a physical point a view, the Laplacian on a compact Riemannian manifold is a fundamental linear operator which describes numerous propagation phenomena: heat propagation, wave propagation, quantum dynamics, etc. Moreover, the spectrum of the Laplacian contains vast information about the geometry of the manifold. This book gives a self-contained introduction to spectral geometry on compact Riemannian manifolds. Starting with an overview of spectral theory on Hilbert spaces, the book proceeds to a description of the basic notions in Riemannian geometry. Then its makes its way to topics of main interests in spectral geometry. The topics presented include direct and inverse problems. Direct problems are concerned with computing or finding properties on the eigenvalues while the main issue in inverse problems is knowing the spectrum of the Laplacian, can we determine the geometry of the manifold? Addressed to students or young researchers, the present book is a first introduction to spectral theory applied to geometry. For readers interested in pursuing the subject further, this book will provide a basis for understanding principles, concepts, and developments of spectral geometry.