Spectroscopic Study of Charge-transfer States in Organic Semiconductors

Spectroscopic Study of Charge-transfer States in Organic Semiconductors

Author: Yun Liu

Publisher:

Published: 2021

Total Pages: 90

ISBN-13:

DOWNLOAD EBOOK

To achieve net zero carbon emission required for a sustainable economy, global energy production requires a clean and reliable solution. Photovoltaic technology that directly converts sunlight into electricity has demonstrated its potential in contributing to a carbon free energy future. Among myriad solar technologies, photovoltaic cells based on organic semiconductors offer unique advantages of being light weight, flexible and low cost and have shown promising photovoltaic performance with efficiency climbing over 18%. In state-of-the-art organic solar cells, a mixture of polymer electron donor and electron acceptor molecules converts light energy to electrical energy. The rapid performance advancement from 11% to over 18% in recent years is largely achieved by the replacement of fullerene molecules with small molecules as electron acceptors, known as non-fullerene acceptors. These new materials not only unlock promising photovoltaic performance but more importantly pose new photophysical questions that challenge the research community’s original understanding of organic solar cells and suggest new design rules. Central to the photophysics of organic solar cells, as reviewed in Chapter 1, is the charge-transfer state formed between the electron donor molecular and the acceptor molecule. The work presented in this thesis focuses on understanding the properties of the charge-transfer state and its role in mediating energy loss in solar cells. Contrary to the traditional model in which significant driving energy is required to separate tightly bound electron-hole pair in the charge-transfer state, one surprising finding to the organic solar cell community is that the most efficient polymer/non-fullerene organic photovoltaics have negligible driving force for charge separation. Furthermore, compared to fullerene acceptors, non-fullerene acceptors have appreciable absorption, implying that charge generation via hole transfer from acceptor to donor could play an important role. In Chapter 2, via detailed time-resolved and steady state spectroscopic studies, we discover a slow yet efficient generation of the charge-transfer state and charge carriers via hole transfer using a model blend of polymer and non-fullerene acceptors. Our findings also allude to a new photophysical scheme in charge generation that was not observed in polymer/fullerene blends but important to efficient polymer/non-fullerene acceptor blends. Another remarkable property of many efficient polymer/non-fullerene blends is their high photoluminescence efficiency and consequently small non-radiative recombination loss, suggesting that "a great solar cell is also a great light emitting diode" also applies to organic solar cells and prompting research efforts on improving the luminescence efficiency of charge-transfer states. Based on Shockley-Queisser’s theoretical framework, an ideal solar cell should only suffer energy loss from radiative recombination as it is unavoidable, and that any non-radiative recombination is excess. In organic solar cells, however, due to molecular vibrations, non-radiative recombination loss contributes a significant amount to total energy loss. Current research efforts have shown that the non-radiative recombination loss follows an energy-gap law where higher gap materials have intrinsically lower loss. Moreover, photoluminescence yield of the charge-transfer state can be limited by that of the local exciton of the lower bandgap material when these states quantum mechanically mix. In Chapter 3, I combine spectroscopic methods and molecular dynamic calculations to examine in detail what molecular properties determine photoluminescence yield of the charge-transfer state and non-radiative recombination loss of the solar cell. After demonstrating an intrinsically emissive yet charge-generating small molecule blend, I show that due to wavefunction mixing between the charge-transfer state and the local exciton, both photoluminescence quantum yield and lifetime of the local exciton influences emission of the charge-transfer state. The latter is a new consideration for selecting materials for efficient organic photovoltaics and light emitting diodes. In Chapter 4, I propose and show current progress on a previously overlooked spectroscopy method directly detecting wavefunction mixing between the charge-transfer state and the local exciton of non-fullerene acceptor molecules. Our findings and proposal provide direction for molecular design and material selection to limit energy loss in organic solar cells.


Plasmonic Organic Solar Cells

Plasmonic Organic Solar Cells

Author: Bo Wu

Publisher: Springer

Published: 2016-10-04

Total Pages: 114

ISBN-13: 9811020213

DOWNLOAD EBOOK

This book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells’ performance. However, there have been a number of controversies over the effects of such integration – where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.


Probing Exciton and Charge Dynamics in Organic Thin Films and Photovoltaics with Nonlinear Spectroscopy

Probing Exciton and Charge Dynamics in Organic Thin Films and Photovoltaics with Nonlinear Spectroscopy

Author: Thomas James McDonough

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Emerging organic solar cell technologies offer unique advantages over silicon solar cells, such as solution processability and the use of flexible substrates, but the efficiencies of these devices do not yet match the efficiency of silicon. Ultrafast nonlinear spectroscopies can probe the fates of photoexcited species on timescales in which these species are lost to channels that do not result in electric current. In the first study, I compare the ultrafast dynamics of singlet fission and charge generation in pentacene films grown on glass and graphene. The molecular orientation is different on the two substrates: the long axis of the pentacene molecules are "standing-up" (normal to the surface) on glass and "lying-down" (parallel to the surface) on graphene. By studying the fluence and polarization dependence of the transient absorption of pentacene on these two substrates, I am able to clarify previous spectral assignments. I identify a broad, isotropic absorption at 853 nm as due in significant part to hole absorption, in contrast to this feature's typical assignment to T1-T2 absorption. At high fluence, additional peaks at 614 and 688 (on glass) nm appear, whose kinetics and anisotropies are not explained by heating, which I assign to charge generation. In the second study, I utilize two-dimensional white-light spectroscopy to study the morphology dependence of exciton diffusion in semiconducting carbon nanotubes. I analyze the spectral diffusion of the S1-S1 2D-WL lineshape via the center line slope method to separate the homogeneous and inhomogeneous contributions to the lineshape in each sample. I determine a morphology independent homogeneous linewidth of ~10 meV, but I find that the inhomogeneous linewidth is sensitive to the particular sample environment. I model our experimental spectra with kinetic Monte Carlo simulations of exciton diffusion in a 1D potential. I also present preliminary bias-dependent transient absorption and 2D-WL measurements of carbon nanotube solar cell devices. I observe increasing positive trion absorption with increasing forward bias. The kinetics in the device are much different than the kinetics in the thin film, and there is an interesting change in kinetics with bias voltage that requires further investigation


Organic Solar Cells

Organic Solar Cells

Author: Liming Ding

Publisher: John Wiley & Sons

Published: 2022-02-09

Total Pages: 988

ISBN-13: 3527833668

DOWNLOAD EBOOK

Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.


Organic Solar Cells

Organic Solar Cells

Author: Wallace C.H. Choy

Publisher: Springer Science & Business Media

Published: 2012-11-19

Total Pages: 268

ISBN-13: 1447148231

DOWNLOAD EBOOK

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.